I'm thinking of a number...

The number is greater than 50.

This number is not a multiple of five.

The number is a multiple of two.

Half the digits are odd.

The difference between the digits is five.

The greatest of the digits is in the ten's place.

The number is a multiple of three.

The digital root of the number is one less than 10.

The number is 7%.

I'm thinking of a number...

100\% of the digits in this number are odd.

The digit in the one's place is a factor of the digit in the hundred's place.
$\mathrm{X}-\mathrm{Y}=$ the sides on an octagon when
$X=$ hundred's digit and $Y=$ ten's digit.
In the problem, $28 \div 3$, the remainder is the digit in the ten's place.

The number is closer to 1,000 than 500.
$\mathrm{X}-\mathrm{Z}=$ the sides on a hexagon when
$X=$ hundred's digit and $Z=$ one's digit.
The digital root of this number is the number of sides on a quadrilateral.

One of the digits is the identity element for multiplication.

The number is 913.

I'm thinking of a number...

The number is less than 5,000.

Half the digits are odd.

One of the digits is the smallest prime number.
$\mathrm{X}+\mathrm{Z}=\mathrm{Y}$ when $\mathrm{X}=$ digit in the thousand's place, $\mathrm{Y}=$ the digit in the one's place, and $\mathrm{Z}=$ the ten's place.

The digital root of this number is the identity element for multiplication.

This number is made up from four consecutive numbers.
$\mathrm{X}+\mathrm{Y}=\mathrm{Z}+\mathrm{H}$ using the values from the previous clue and $\mathrm{H}=$ hundred's place.

One of the digits is the number of quarters in \$1.00.

The least digit is in the greatest place.

The number is 1,234 .

