## 2.1 - What is a Power? <br> Math 9

## Square



What is the area of the square? $\qquad$
Express the area as a product. $\qquad$
Express the area using exponents. $\qquad$

## Cube



What is the volume of the cube? $\qquad$
Express the volume as a product. $\qquad$
Express the volume using exponents. $\qquad$

When an integer, other than 0 , can be written as a product of equal factors, we can write this integer as a $\qquad$ .

4 is the $\qquad$ .

3 is the $\qquad$ .

$4^{3}$ is the $\qquad$ .

A power with an integer base and exponent $\mathbf{2}$ is called a $\qquad$
$\qquad$ .

A power with an integer base and exponent $\mathbf{3}$ is called a $\qquad$
$\qquad$ .

Ex. 1: Write the following as powers.
a) $6 \times 6 \times 6 \times 6$
b) 8
c) $(-2) \times(-2) \times(-2)$

Ex. 2: Write the following as $i$ ) repeated multiplication and $i i$ ) in standard form
a) $5^{4} \quad$ )
b) $2^{6} \quad i$
ii)
ii)

Whenever powers involve negative numbers make sure to use brackets.

Ex. 3: i) Identify the base of each power, then evaluate. ii) Write as repeated multiplication then evaluate
a) $(-5)^{4}$
b) $-5^{4}$
c) $-\left(-5^{4}\right)$
i)
i)
i)
ii)

Ex. 4: Write the following as powers, then evaluate.
a) $(-3) \times(-3) \times(-3) \times(-3) \times(-3)$
b) $-(6)(6)(6)(6)$
c) $-(-5)(-5)(-5)(-5)(-5)(-5)(-5)(-5)$

## 2.2 - Powers of Ten and Zero Exponent Math 9

## Zero Exponent Law

A power with an integer base, other than 0 , and an exponent 0 is equal to 1 .

$$
n^{0}=1 \quad, \quad n \neq 0
$$

Ex. 1: Evaluate.
a) $13^{0}$
b) $-13^{0}$
c) $(-13)^{0}$

## Powers of 10

| Number in Words | Standard Form | Power |
| :--- | :--- | :---: |
| One Billion | 1000000000 |  |
| One Hundred Million |  |  |
| Ten Million |  |  |
| One Million |  |  |
| One Hundred Thousand |  |  |
| Ten Thousand |  |  |
| One Thousand |  |  |
| One Hundred |  |  |
| Ten |  |  |
| One |  |  |

Ex. 2: Write the following numbers using powers of 10 .
a) 500
b) 10300
c) 5432

## 2.3 - Order of Operations with Powers <br> Math 9

$$
\mathrm{B} \text { G } \mathrm{B}_{\mathrm{i}}^{\mathrm{i}} \mathrm{~m}
$$

## Steps to evaluate

1. Identify the operation to perform according to BEDMAS and underline it.
2. Perform the underlined operation only.
3. Repeat steps $1 \& 2$ until fully evaluated.

Ex. 1: Evaluate.
a) $4^{2}+3^{4}$
b) $12-2^{4}$
c) $(4+2)^{3}$
d) $2^{2} \times 3^{3}$
e) $(-3)^{4}+5^{6}$
f) $4-3 \times 2^{4}$

Ex. 2: Evaluate.
a) $(-2)^{3} \times 3^{2}+15$
b) $\left[3^{0} \times(-4)^{3}-12\right]^{2}$

Ex. 3: Evaluate.
a) $5^{3}-3 \times 2^{5}+32$
b) $5^{2} \div\left[(-10)^{2} \div(-4)\right]$
c) $\frac{\left(10-2^{2}\right)^{2}-6}{-2^{4}+10}$

Ex. 4: Congratulations! You've just won a raffle for a $\$ 10,000$ shopping spree at Metrotown. All you need to do is answer the skill testing question below and the prize is yours. Good luck!

Skill Testing Question: $-\left(40-3 \times 2^{3}\right) \div\left[(-4)^{2}-40^{0} \times 12\right]$

## Mid-Unit Review

2.1

1. Write each power in standard form.
a) $14^{2}$
b) $5^{1}$
c) $-8^{3}$
d) $-(-4)^{4}$
e) $(-6)^{3}$
f) $(-2)^{8}$
2. Copy and complete this table.

|  | Power | Base | Exponent | Repeated <br> Multiplication | Standard <br> Form |
| :--- | :--- | :---: | :---: | :---: | :---: |
| a) | $4^{3}$ |  |  |  |  |
| b) | $2^{5}$ |  |  |  |  |
| c) | $8^{6}$ |  |  |  |  |
| d) |  | 7 | 2 |  |  |
| e) |  |  |  | $3 \times 3 \times 3 \times 3$ |  |

3. a) Evaluate the first 8 powers of 7 .

Copy and complete this table.

| Power of 7 | Standard Form |
| :---: | :---: |
| $7^{1}$ |  |
| $7^{2}$ |  |
| $7^{3}$ |  |
| $7^{4}$ |  |
| $7^{5}$ |  |
| $7^{6}$ |  |
| $7^{7}$ |  |
| $7^{8}$ |  |

b) What pattern do you see in the ones digits of the numbers in the second column?
c) Verify that the pattern continues by extending the table for as many powers of 7 as your calculator displays.
d) Use the pattern. Predict the ones digit of each power of 7. Explain your strategy.
i) $7^{12}$
ii) $7^{14}$
iii) $7^{17}$
iv) $7^{22}$
2.2
4. Write in standard form.
a) $10^{6}$
b) $10^{0}$
c) $10^{8}$
d) $10^{4}$
5. Write as a power of 10 .
a) one billion
b) one
c) 100
d) 100000
6. Evaluate.
a) $(-5)^{0}$
b) $25^{0}$
c) $-6^{0}$
d) $9^{0}$
7. The area of land is measured in hectares (ha). One hectare is the area of a square with side length 100 m . Write the number of square metres in 1 ha as a power.
8. Evaluate. State which operation you do first.
a) $(-21-6)^{2}+14$
b) $6 \div(-2)+(2 \times 3)^{2}$
c) $[5-(-4)]^{3}-(21 \div 7)^{4}$
d) $\left[(6-21)^{3} \times(2+2)^{6}\right]^{0}$
e) $(3-5)^{5} \div(-4)$
f) $-30-(7-4)^{3}$
9. Both Sophia and Victor evaluated this expression: $-2^{4} \times 5+16 \div(-2)^{3}$ Sophia's answer was -82 and Victor's answer was 78 . Who is correct? Find the likely error made by the other student.
10. Identify, then correct, any errors in the student work below. How do you think the errors occurred?
$(-2)^{4}-(-3)^{3} \div(-9)^{0} \times 2^{3}$
$=16-27 \div(-1) \times 8$
$=-11 \div(-1) \times 8$
$=11 \times 8$
$=88$

## Mid-Unit Review Answers

1. 

a) 196
b) 5
c) -512
d) -256
e) -216
f) 256
2.
a)

| Power | Base | Exponent | Repeated <br> Multiplication | Standard <br> Form |
| :---: | :---: | :---: | :---: | :---: |
| $4^{3}$ | 4 | 3 | $4 \times 4 \times 4$ | 64 |
| $2^{3}$ | 2 | 5 | $2 \times 2 \times 2 \times 2 \times$ <br> 2 | 32 |
| $8^{6}$ | 8 | 6 | $8 \times 8 \times 8 \times 8 \times$ <br> $8 \times 8$ | 262144 |
| $7^{2}$ | 7 | 2 | $7 \times 7$ | 49 |
| $3^{4}$ | 3 | 4 | $3 \times 3 \times 3 \times 3$ | 81 |

3. a)

| Power of 7 | Standard Form |
| :---: | :---: |
| $7^{1}$ | 7 |
| $7^{2}$ | 49 |
| $7^{3}$ | 343 |
| $7^{4}$ | 2401 |
| $7^{3}$ | 16807 |
| $7^{\circ}$ | 117649 |
| $7^{\prime}$ | 823543 |
| $7^{8}$ | 5764801 |

b) The pattern in the ones digits is $7,9,3,1,7,9,3,1, \ldots$
c)

| Power of 7 | Standard Form |
| :---: | :---: |
| $7^{9}$ | 40353607 |
| $7^{10}$ | 282475249 |
| $7^{11}$ | 1977326743 |

d) i) 1
ii) 9
iii) 7
iv) 9
4. a) 1000000
b) 1
c) 100000000
d) 10000
5. a) $10^{9}$
b) $10^{\circ}$
c) $10^{2}$
d) $10^{5}$
6. a) 1
b) 1
c) -1
d) 1
7. $10^{4} \mathrm{~m}^{2}$
8. a) Subtract: $(-21-6) ; 743$
b) Multiply: $(2 \times 3) ; 33$
c) Subtract: $[5-(-4)]$; 648
d) Evaluate the power with exponent $0 ; 1$
e) Subtract: $(3-5) ; 8$
f) Subtract: (7-4);-57
9. Sophia is correct. Victor might have included the negative sign in the power $-2^{4}$ and evaluated it as 16 .
10. $(-3)^{3}=-27$, not $27 ;(-9)^{0}=1$, not -1

Correction:
$(-2)^{4}-(-3)^{3} \div(-9)^{0} \times 2^{3}$
$=16-(-27) \div 1 \times 8$
$=16-(-27) \times 8$
$=16-(-216)$
$=232$

## 2.4 - Exponent Laws I <br> Math 9

## Investigate:

| Product of Powers | Product as Repeated Multiplication | Product as a Power |
| :---: | :---: | :---: |
| $3^{3} \times 3^{4}$ |  |  |
| $5^{4} \times 5^{2}$ |  |  |
| $(-2)^{3} \times(-2)^{2}$ |  |  |

## Exponent Law for a Product of Powers

To multiply powers with the same base, we add the exponents.

$$
a^{m} \times a^{n}=a^{m+n}
$$

The variable $a$ is any integer, except $0 ; m$ and $n$ are any whole numbers.

Ex. 1: Write each expression as a power.
a) $4^{5} \times 4^{7}$
b) $3^{9} \times 3$
c) $(-13)^{12} \times(-13)^{11}$

Ex. 2: Evaluate.
a) $5^{2} \times 5^{6}$
b) $(-3)^{4} \times(-3)^{2}$
c) $(-2)^{5} \times(-2)^{4}$

## Investigate:

| Quotient of Powers | Quotient as Repeated Multiplication | Product as a Power |
| :---: | :---: | :---: |
| $3^{5} \div 3^{2}=\frac{3^{5}}{3^{2}}$ |  |  |
| $6^{7} \div 6^{4}=\frac{6^{7}}{6^{4}}$ |  |  |
| $(-4)^{5} \div(-4)^{3}=\frac{(-4)^{5}}{(-4)^{3}}$ |  |  |

## Exponent Law for a Quotient of Powers

To divide powers with the same base, we subtract the exponents.

$$
a^{m} \div a^{n}=a^{m-n} \quad m \geq n
$$

The variable $a$ is any integer, except $0 ; m$ and $n$ are any whole numbers.

Ex. 3: Write each expression as a power, then evaluate.
a) $8^{7} \div 8^{3}$
b) $3^{12} \div 3^{8}$
c) $(-5)^{10} \div(-5)^{6}$

Ex. 4: Evaluate using exponent laws and order of operations.
a) $3^{3}+3^{2} \times 3^{4}$
b) $(-2)^{5} \times(-2)^{2} \div\left[(-2)^{8} \div(-2)^{5}\right]+(-2)^{3}$

## 2.5 - Exponent Laws II <br> Math 9

## Investigate:

| Power | As Repeated <br> Multiplication | As a Product of Factors | As a <br> Power |
| :---: | :---: | :---: | :---: |
| $\left(2^{3}\right)^{4}$ |  |  |  |
| $\left(3^{2}\right)^{4}$ |  |  |  |
| $\left[(-4)^{3}\right]^{2}$ |  |  |  |
| $\left[(-5)^{2}\right]^{3}$ |  |  |  |

## Exponent Law for a Power of a Power

To raise a power to a power, we multiply the exponents.

$$
\left(a^{m}\right)^{n}=a^{m n}
$$

The variable $a$ is any integer, except $0 ; m$ and $n$ are any whole numbers.

Ex. 1: Write each expression as a power, then evaluate.
a) $\left(4^{2}\right)^{3}$
b) $-\left(3^{2}\right)^{7}$
c) $\left[(-2)^{3}\right]^{5}$

## Investigate:

| Power | As Repeated <br> Multiplication | As a Product of Factors | As a Product <br> of Powers |
| :---: | :---: | :---: | :---: |
| $(2 \times 5)^{3}$ |  |  |  |
| $(3 \times 8)^{2}$ |  |  |  |
| $[(-5) \times 6]^{3}$ |  |  |  |

## Exponent Law for a Power of a Product

$$
(a b)^{m}=a^{m} b^{m} \quad a \text { and } b \text { are any integers, except } 0 .
$$

$m$ is any whole number.

Ex. 2: Write each expression as a product of powers, then evaluate.
a) $(5 \times 3)^{2}$
b) $(3 \times 2)^{5}$
c) $[5 \times(-2)]^{4}$

## Investigate:

| Power | As Repeated <br> Multiplication | As a Quotient of Factors | As a Quotient <br> of Powers |
| :---: | :---: | :---: | :---: |
| $\left(\frac{2}{5}\right)^{3}$ |  |  |  |
| $\left(\frac{3}{4}\right)^{2}$ |  |  |  |
| $\left(\frac{1}{6}\right)^{4}$ |  |  |  |

Exponent Law for a Power of a Quotient.

$$
\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}} \quad b \neq 0 \quad \begin{array}{ll}
a \text { and } b \text { are any integers, except } 0 . \\
& m \text { is any whole number. }
\end{array}
$$

Ex. 3: Write each expression as a quotient of powers, then evaluate.
a) $\left(\frac{8}{4}\right)^{3}$
b) $\left[\frac{27}{(-3)}\right]^{2}$
c) $(144 \div 6)^{3}$
d) $\left(\frac{2}{5}\right)^{4}$

Ex. 4: Simplify, then evaluate each expression.
a) $\left(2^{3} \times 2^{2}\right)^{4}$
b) $\left(4^{5}\right)^{6} \div\left(4^{12}\right)^{2}$
c) $\left(3^{3} \times 3\right)^{4} \div\left(3^{8} \div 3^{3}\right)^{2}$
d) $\left[(-2)^{3} \times(-2)^{0}\right]^{5}+(-2)^{12} \div\left[(-2)^{5}\right]^{2}$
e) $[3 \times(-2)]^{4}+\left(5^{2}\right)^{3}-\left[(-4)^{5} \div(-4)^{2}\right]^{3}$

## Study Guide

D A power represents repeated multiplication.

$$
\begin{aligned}
& 2^{5}=2 \\
&=32 \\
& \times 2 \times 2 \times 2 \times 2 \\
&(-3)^{4}=(-3)(-3)(-3)(-3) \\
&=81 \\
&-3^{4}=-(3)(3)(3)(3) \\
&=-81
\end{aligned}
$$

D A power with an integer base, other than 0 , and an exponent 0 is equal to 1 .

$$
\begin{aligned}
& 2^{0}=1 \\
& (-4)^{0}=1 \\
& -4^{0}=-1
\end{aligned}
$$

D To evaluate an expression, follow this order of operations:
Evaluate inside brackets.
Evaluate powers.
Multiply and divide, in order, from left to right.
Add and subtract, in order, from left to right.

## Exponent Laws

$m$ and $n$ are whole numbers.
$a$ and $b$ are any integers, except 0 .

1) Product of Powers

$$
a^{m} \times a^{n}=a^{m+n}
$$

D Quotient of Powers

$$
a^{m} \div a^{n}=a^{m-n} \quad m \geq n
$$

D Power of a Power

$$
\left(a^{m}\right)^{n}=a^{m n}
$$

D Power of a Product $(a b)^{m}=a^{m} b^{m}$

D Power of a Quotient

$$
\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \quad b \neq 0
$$

