The Automatic Professor Teaches you about: 6.1 Types of Chemical Reactions Instructions: Fill in the notes while you watch the video. Make headings, skip lines between topics, and underline headings. Use color to help your brain learn. C4.4 I can identify, give evidence for, predict products of, and classify the flowing types of chemical reactions: synthesis (combination), decomposition, single and double replacement, neutralization (acid-base), combustion. Classifying chemical reactions makes it easier to predict the products of reactions and recognize the new reactions. There are 6 common types of chemical reactions: 1. SYNTHESIS (COMBINATION) REACTION - _____ or more reactants (A and B) combine to produce a _____ product (AB). (The letters A and B represent elements.) General Equation AB Example Equation 2Na Cl2 2NaCl \rightarrow (ionic) Example Equation $2N_2$ O_2 \rightarrow 2N₂O (covalent) Try the Practice Problems on page 259. 2. **DECOMPOSITION REACTIONS** - The breaking down of a _____ into smaller compounds or _____ elements. Reverse of a synthesis reaction. General Equation AΒ \rightarrow Α В Example Equation 2NaCl 2Na \rightarrow Cl2 Example Equation 2H2O \rightarrow $2H_2 +$ O_2 Try the Practice Problems on page 260. 3. SINGLE REPLACEMENT REACTIONS - A reactive _____ (a metal or non-metal) and a react to produce another element and another compound. (One of the elements in the compound is _____ by another element.)

BC

BC

Α

AC (A is a metal)

BA (A is a non-metal)

B +

General Equations

Example Equation (A is a metal)	2Al	+	3CuCl₂	\rightarrow	3Cu	+	2AlCl ₃
Example Equation (A is a metal)	Cu	+	2AgNO₃	\rightarrow	2Ag	+	Cu(NO ₃) ₂
Example Equation (A is a non-metal)	F2	+	2NaI	\rightarrow	I_2	+	2NaF

Try the Practice Problems on page 261.

4. **DOUBLE REPLACEMENT REACTIONS** - Two ionic ______ react to produce two other ionic compounds. At least one of the compounds produces a _____.

General Equation	$AB_{(aq)}$	+	CD _(aq)	\rightarrow	AD _(aq)	+	$CB_{(s)}$
Example Equation	Pb(NO ₃) ₂	+	2NaI	\rightarrow	2NaNO ₃	+	PbI ₂
Example Equation	3NaOH	+	FeCl ₃	\rightarrow	3NaCl	+	Fe(OH)3

Try the Practice Problems on page 262.

5. **NEUTRALIZATION REACTIONS** - An acid and base combine and ______ each other. An acid and a base react to form a _____ and _____.

General Equation	Acid	+	Base	\rightarrow	Salt	+	Water
(X is a negative ion.)	HX	+	MOH	\rightarrow	MX	+	H₂O
(M is s a positive ion.)							
Example Equation	H₂(SO ₄)	+	Ca(OH)2	\rightarrow	CaSO ₄	+	2H₂O
Example Equation	3H₃PO₄	+	3Fe(OH)) ₂ →	Fe ₃ (PO ₄)	2 +	6H₂O

Try the Practice Problems on page 263.

6. **COMBUSTION REACTIONS** - A ______ reaction of a compound or element react with _____ to form an oxide and to produce heat.

General Equation	Hydrocarbon	+	oxygen	\rightarrow	carbon diox	ide	+ Water
	C _X H _y	+	O ₂	\rightarrow	CO ₂	+	H₂O
Example Equation	CH4	+	202	\rightarrow	CO ₂	+	2H₂O
Example Equation	3C ₂ H ₂	+	5O ₂	\rightarrow	4CO ₂	+	2H ₂ O
Example Equation	C ₆ H ₁₂ O ₆	+	602	\rightarrow	6CO₂	+	6H₂O

Try the Practice Problems on page 264. Then try the Summary Practice Problems p. 265.