The Automatic Professor Teaches you about:

6.1 Types of Chemical Reactions

Instructions: Fill in the notes while you watch the video. Make headings, skip lines between topics, and underline headings. Use color to help your brain learn.

C4.4 I can identify, give evidence for, predict products of, and classify the flowing types of chemical reactions: synthesis (combination), decomposition, single and double replacement, neutralization (acid-base), combustion.

Classifying chemical reactions makes it easier to predict the products of reactions and recognize the new reactions. There are 6 common types of chemical reactions:

1. SYNTHESIS (COMBINATION) REACTION - \qquad or more reactants (A and B) combine to produce a \qquad product ($A B$). (The letters A and B represent elements.)

| General Equation | $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{AB}$ |
| :--- | :---: | :--- | :--- |
| Example Equation
 (ionic) | $2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}$ |
| Example Equation
 (covalent) | $2 \mathrm{~N}_{2}+\mathrm{O}_{2} \rightarrow>2 \mathrm{~N}_{2} \mathrm{O}$ |

Try the Practice Problems on page 259.
2. DECOMPOSITION REACTIONS - The breaking down of a \qquad into smaller compounds or \qquad elements. Reverse of a synthesis reaction.

| General Equation | $\mathrm{AB} \rightarrow \mathrm{A}+\mathrm{B}$ | |
| :--- | :---: | :--- | :--- |
| Example Equation | 2 NaCl | $\rightarrow 2 \mathrm{Na}+\mathrm{Cl}_{2}$ |
| Example Equation | 2 H 2 O | $\rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$ |

Try the Practice Problems on page 260.
3. SINGLE REPLACEMENT REACTIONS - A reactive \qquad (a metal or non-metal) and a
\qquad react to produce another element and another compound. (One of the elements in the compound is \qquad by another element.)

General Equations	$A+B C \rightarrow B+A C$ (A is a metal)
$A+B C \rightarrow B A$ (A is a non-metal $)$	

| Example Equation
 (A is a metal) | $2 \mathrm{Al}+3 \mathrm{CuCl}_{2} \rightarrow 3 \mathrm{Cu}+2 \mathrm{AlCl}_{3}$ |
| :--- | :---: | :--- |
| Example Equation
 $(A$ is a metal) $)$ | $\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{Ag}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ |
| Example Equation
 $(A$ is a non-metal) | $\mathrm{F} 2+2 \mathrm{NaI} \rightarrow \mathrm{I}_{2}+2 \mathrm{NaF}$ |

Try the Practice Problems on page 261.
4. DOUBLE REPLACEMENT REACTIONS - Two ionic \qquad react to produce two other ionic compounds. At least one of the compounds produces a \qquad .

General Equation	$A B_{(a q)}$	$C D_{\text {(aq) }}$	\rightarrow	$A D_{(a q)}$	+	$C B_{(s)}$
Example Equation	$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	+ 2 NaI	\rightarrow	$2 \mathrm{NaNO}_{3}$	+	PbI_{2}
Example Equation	3 NaOH	$+\mathrm{FeCl}_{3}$	\rightarrow	3 NaCl	+	$\mathrm{Fe}(\mathrm{OH})_{3}$

Try the Practice Problems on page 262.
5. NEUTRALIZATION REACTIONS - An acid and base combine and \qquad each other. An acid and a base react to form a \qquad and \qquad

General Equation (X is a negative ion.) (M is s a positive ion.)	$\begin{aligned} & \text { Acid } \\ & H X \end{aligned}$		$\begin{aligned} & \text { Base } \\ & \mathrm{MOH} \end{aligned}$	$\begin{aligned} & \vec{\rightarrow} \\ & \rightarrow \end{aligned}$	$\begin{aligned} & \text { Salt } \\ & \text { MX } \end{aligned}$		$\begin{aligned} & \text { Water } \\ & \mathrm{H}_{2} \mathrm{O} \end{aligned}$
Example Equation	$\mathrm{H}_{2}\left(\mathrm{SO}_{4}\right)$	+	$\mathrm{Ca}(\mathrm{OH})_{2}$	\rightarrow	CaSO_{4}		$2 \mathrm{H}_{2} \mathrm{O}$
Example Equation	$3 \mathrm{H}_{3} \mathrm{PO}_{4}$	+	$3 \mathrm{Fe}(\mathrm{OH})_{2}$		$\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	+	$6 \mathrm{H}_{2} \mathrm{O}$

Try the Practice Problems on page 263.
6. COMBUSTION REACTIONS - A \qquad reaction of a compound or element react with to form an oxide and to produce heat.

| General Equation | Hydrocarbon
 $C_{x} \mathrm{H}_{4}$ | +
 + | oxygen
 O_{2} | \rightarrow
 \rightarrow | carbon dioxide
 CO_{2}
 + | +
 $\mathrm{H}_{2} \mathrm{O}$ | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Example Equation | CH 4 | + | $2 \mathrm{O}_{2}$ | \rightarrow | CO_{2} | + | $2 \mathrm{H}_{2} \mathrm{O}$ |
| Example Equation | $3 \mathrm{C}_{2} \mathrm{H}_{2}$ | + | $5 \mathrm{O}_{2}$ | \rightarrow | $4 \mathrm{CO}_{2}$ | + | $2 \mathrm{H}_{2} \mathrm{O}$ |
| Example Equation | $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ | + | $6 \mathrm{O}_{2}$ | \rightarrow | $6 \mathrm{CO}_{2}$ | + | $6 \mathrm{H}_{2} \mathrm{O}$ |

Try the Practice Problems on page 264. Then try the Summary Practice Problems p. 265.

