Organic Chemistry

Name:

Date:

Lewis Structure for Carbon:

A carbon atom has _____ valence electrons.

Organic Compounds

- Contain carbon atoms usually bonded to other carbon atoms and hydrogen atoms.
 - o Called _____
- Organic compounds may also contain: ______

Examples of organic compounds:

- Scientists thought that organic compounds contained a "life force" or "vitality.
- > Was proved incorrect in 1828 when an inorganic salt was heated to produce an organic compound.

$$H_4N - O - C \equiv N \xrightarrow{heat} H_2N - C - NH_2$$

ammonium cyanate urea

Simple Hydrocarbons

- Recall that a carbon has _____ valence electrons.
- Each carbon atom can form _____ covalent bonds.
- With so many different ways that a carbon can bond...
 - There are ______of known organic compounds
 - There is an almost ______ of unknown organic compounds

Alkanes

- Hydrocarbons containing only ______.
- They are saturated there is no room for other atoms to bond to the ______.
- Chemical Formula:

# of C Atoms	Prefix	Alkane
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

Problem Set:

1. Write out the condensed structural formula for all 10 straight-chain alkanes.

2. Draw the carbon skeleton formula for all 10 straight-chain alkanes. (You cannot draw methane.)

3. Draw a structural formula, condensed structural formula, and carbon skeletal formula for C_6H_{14} .

4. Octane, a constituent of gasoline, has the molecular formula C_8H_{18} . Draw a structural formula, condensed structural formula and carbon skeleton formula for octane. Assume that the carbons are all bonded in a single chain to each other.

5. What would the formula be for a straight chain alkane that had the following number of carbon or hydrogen atoms?

a.	6 carbon atoms	f.	102 hydrogen atoms
b.	12 carbon atoms	g.	54 hydrogen atoms
c.	14 carbon atoms	h.	84 hydrogen atoms
d.	29 carbon atoms	i.	16 hydrogen atoms
e.	98 carbon atoms	j.	4 hydrogen atoms

H ₃ C CH ₃ CH ₃ Naming H ₃ C CH ₃ CH ₃ Simple Hydrocarbo	Name: Date:			
Steps to Naming Simple Alkanes:				
1. Find the	_ of carbon atoms. It does NOT have to be in a straight			
line. This is called the chain.	line. This is called the chain.			
$CH_3 - CH - CH_2 - CH_3$ CH_3	The longest continuous chain of carbon atoms contains carbon atoms			
State the number of catbon atoms using the appropriate prefix and the ending "ane."				
The appropriate prefix would be and	with the ending "ane" would be			
2. Branches are called groups. Number the carbon atoms in the parent chain a				
·				
$CH_3 - CH - CH_2 - CH_3$ \downarrow CH_3				
3. Name each branch.				

Give a prefix according to the number of carbon atoms it contains. Branch names end in _____ instead of

 $\begin{array}{c} CH_3 - CH - CH_2 - CH_3 \\ \\ I \\ CH_3 \end{array}$ List the branches in ______. If more than one branch has the same number of carbon atoms use the prefixes ______.

4. Name each branch.

State the name of the alkane by naming each branch, then naming the parent. Use commas between numbers and hyphens between numbers and branches.

Practice #1.

- 1. Parent Chain.
- 2. Number the parent chain.
- 3. Name the branches.
- 4. Name the compound

Practice #2.

- 1. Parent Chain.
- 2. Number the parent chain.
- 3. Name the branches.
- 4. Name the compound

Practice #3.

- 1. Parent Chain.
- 2. Number the parent chain.
- 3. Name the branches.
- 4. Name the compound

Practice #4.

- 2. Number the parent chain.
- 3. Name the branches.
- 4. Name the compound

Date:

$\overset{i}{\overset{}_{H}} = \overset{i}{\overset{}_{H}} \overset{i}{\overset{}_{H_2}} - \overset{i}{\overset{}_{C}} \overset{H_3}{\overset{}_{H_2}}$ Alkenes and Alkynes

Alkenes

- Hydrocarbons containing _____ bonds.
- General Formula: _____
- They are unsaturated the double bond is a ______ for other atoms to bond to the carbon atom.

# of C Atoms	Prefix	Alkene
2		
3		
4		
5		
6		
7		
8		
9		
10		

Steps to Naming Alkenes:

1. The ______ must contain the double bond. (*even if it is not the longest chain*)

 $\begin{array}{c} H_{3}C - CH_{2} \\ C = CH_{2} \\ H_{3}C - CH_{2} - CH_{2} \end{array}$

The longest continuous chain of carbon atoms including the double bond contains _____ carbon atoms

2. The parent chain carbon atoms are numbered.....

 $H_{3}C - CH_{2}$ $H_{3}C - CH_{2} - CH_{2}$ $The double bond follows carbon #____.$ $The parent chain is called ____.$

3. The position of the double bond is indicated in the name by stating the ______ of the carbon atom in the parent chain that the double bond follows.

Name the branches!

4. Name the compound.

Practice #1.

- 5. Parent Chain.
- 6. Number the parent chain.
- 7. Name the branches.
- 8. Name the compound

Practice #2.

- 5. Parent Chain.
- 6. Number the parent chain.

H₃C-CH₂-CH₂-CH=CH-CH₃

H₂C=CH-CH=CH-CH₃

- 7. Name the branches.
- 8. Name the compound

Alkynes

- Hydrocarbons containing _____ bonds.
- General Formula: ______
- They are *unsaturated* the double bond is a reactive site for other atoms to bond to the carbon atom.

Steps to Naming Alkynes:

• The same rules for naming an alkene apply; however the ending is "_____" instead of

# of C Atoms	Prefix	Alkyne
2		
3		
4		
5		
6		
7		
8		
9		
10		

Practice #1.

- 1. Parent Chain.
- 2. Number the parent chain.
- 3. Name the branches.
- 4. Name the compound

Practice #2.

- 1. Parent Chain.
- 2. Number the parent chain.
- 3. Name the branches.
- 4. Name the compound

 $CH_3CH_2CHC \equiv CH$ | CH_3

 $CH \equiv C - CH - CH - CH_3$ $\downarrow \qquad \downarrow$ $CH_3 - CH_2 \quad CH_2 - CH_3$

Name:

Date:

Steps to Naming Cyclic Structures:

- The ring that contains the greater number of carbon atoms is the ______
- The prefix "_____" is placed before the parent chain name.
- Parent Chain = _____

- The carbon atoms are numbered either clockwise or ______.
- The ______ are used to identify the placement of the branches.

3. Name the branches.

4. Name the compound.

If the ring structure is not the longest continuous carbon chain, then it is named as a branch with prefix "cyclo" and ends in "yl."

Parent:

Branch: _____

Compound:

Practice #1

- 1. Parent Chain.
- 2. Number the parent chain.

- 3. Name the branches.
- 4. Name the compound

Practice #2

- 1. Parent Chain.
- 2. Number the parent chain.
- 3. Name the branches.
- 4. Name the compound

Practice #3

- 1. Parent Chain
- 2. Number the parent chain.
- 3. Name the branches.
- 4. Name the compound

Aromatic Hydrocarbons

- Benzene is a hydrocarbon with ______ atoms in a ring.
- It has the molecular formula ______
- There is ______ than one way of drawing its Lewis structure.
- Equivalent Lewis structures are called ______ structures.

• Some organic compounds have benzene as a branch. In this case, the branch name is

"

Practice #4

"

- 1. Parent Chain.
- 2. Number the parent chain.
- 3. Name the branches.
- 4. Name the compound

Practice #5

- 1. Parent Chain.
- 2. Number the parent chain.
- 3. Name the branches.
- 4. Name the compound

Practice #6

- 1. Parent Chain.
- 2. Number the parent chain.
- 3. Name the branches.
- 4. Name the compound

Functional Groups

Name:

Date:

Isomers			
Draw the structure for C_5H_{12}			
Structures that have the same	but different chemical properties		
• As the number of	increases, the number of		
increases.			
• Pentane and 2-methylbutane are stru	ctural isomers. There is one more structural isomer. Can you find it?		

Functional Groups

- An atom, group of atoms or type of bond in an organic molecule that react in a predictable manner.
- Symbol "R" is used to represent the ______ of the organic molecule.

Alkyl Halide

- X = _____
- Organic compounds containing ______ are called alkyl halides
- The prefixes are:
- F= _____ Cl = _____ Br = _____ I = _____

Practice #1.

- 1. Parent Chain.
- 2. Number the parent chain.
- 3. Name the branches.
- 4. Name the compound

Practice #2.

- 1. Parent Chain.
- 2. Number the parent chain.
- 3. Name the branches.
- 4. Name the compound

Alcohols: R-Oh

Naming alcohols:

- 1. The parent chain *must* contain the atom attached to the –OH group. Number the carbon atoms in the parent chain so that the –OH group is given the lowest number.
- 2. The name of the parent chain ends with "-ol" instead of "-e".
- 3. Name and identify positions of the branches.
- 4. Name the compound.

Practice #1.

- 1. Parent Chain.
- 2. Number the parent chain.
- 3. Name the branches.
- 4. Name the compound

CH3-CH2-OH

Practice #2.

- 1. Parent Chain.
- 2. Number the parent chain.
- 3. Name the branches.
- 4. Name the compound

Practice #3.

- 1. Parent Chain.
- 2. Number the parent chain.
- 3. Name the branches.
- 4. Name the compound

Name:

3. Name the branches.

Date:

Cis - Trans Isomerism				
Draw the structure for 2-butene Is there any other way to show this structure		cture?		
The do	uble bo	nd "" the molecule in pl	ace and changes the	of the compound.
Namin	g Cis-1	Trans Alkene's:		
	1.	The parent chain must contain the _	·	
	2.	The name of the parent chain ends w	vith "" instead of "	"· _ ·
	3.	Determine if the molecule is "cis" () or "trans" () <i>AT</i> the
		double bond and include it at the fro	nt of the parent chain	
	4.	Include the when	re the double bond starts before the	e parent chain
And as	alway	rs		
	5.	Name and identify positions of the b	ranches.	
	6.	Name the compound.		
Practic	e #1.			
1.	Parent	Chain.	CH ₃ —CH ₂	∠ ^H
)c	=C(
2.	Numb	er the parent chain.	н	CH.
				3
3.	Name	the branches.		
4.	Name	the compound		
Practic	e # 2 .		C	-
1.	Parent	c Chain.		13
			CH ₃ CH ₂ CH ₂ —CH	C=C ^{CH₃}
2.	Numb	er the parent chain.	I	Н

Functional Groups II

4. Name the compound.

Aldehydes Naming aldehydes: 1. Organic compounds containing an oxygen at the ______ of a parent chain double bonded to a carbon. 2. To name aldehydes remove the "_____" from the end of the parent chain and replace it with "_____" Practice #3. 1. Parent Chain. 2. Number the parent chain. 3. Name the branches.

4. Name the compound

Practice #4.

- 1. Parent Chain.
- 2. Number the parent chain.
- 3. Name the branches.
- 4. Name the compound

Ketones

Naming Ketones:

- Organic compounds containing an oxygen in the ______of a parent chain double bonded to a carbon.
- To name ketones remove the "_____" from the end of the parent chain and replace it with
 "

Practice #5.

- 1. Parent Chain.
- 2. Number the parent chain.
- 3. Name the branches.
- 4. Name the compound

Practice #6.

- 1. Parent Chain.
- 2. Number the parent chain.
- 3. Name the branches.
- 4. Name the compound

Ethers

Naming Ethers:

1. Recognise that the molecule is an ether because it has the general form:

R₁-0-R₂

2. Identify the ______ labelled "R₁" and "R₂". *Standard system of labelling carbon chains as used for alkanes*.

3. The shorter of the two chains "R₁" and "R₂" becomes the ______of the name **with the "_____**" suffix, and the name of the longer alkane chain forming the suffix of the name of the ether.

Practice #8.

- 1. Parent Chain.
- Number the parent chain. 2.
- Name the branches. 3.
- Name the compound 4.

Practice #9.

- 1. Parent Chain.
- Number the parent chain. 2.
- Name the branches. 3.
- Name the compound 4.

Practice #10.

Г

- 1. Parent Chain.
- Number the parent chain. 2.
- 3. Name the branches.
- 4. Name the compound

Esters			
Na	ning Esters:		
1.	First, identify the that is part of the continuous chain and bonded to carbon on both sides. (On c	one	
	side of this there will be a carbonyl present but on the other side there won't be.)		

4. Finally, change the ending of the alkane on the same side as the carbonyl from ______. (<u>In this case</u>: methyl methanoate)

Practice #11.

- 1. Parent Chain.
- Number the parent chain. 2.
- Name the branches. 3.
- 4. Name the compound

Practice #12.

- 1. Parent Chain.
- Number the parent chain. 2.
- 3. Name the branches.
- 4. Name the compound

Practice #13.

- 1. Parent Chain.
- 2. Number the parent chain.
- 3. Name the branches.
- 4. Name the compound

