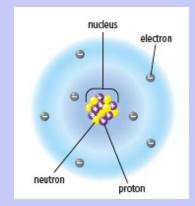

4.1 Atomic Theory and Bonding

- An atom is the smallest particle of an element that still has the properties of that element
 - 50 million atoms, lined up end to end = 1 cm
 - An atom = proton(s) + neutron(s) + electron(s)
 - Crash Course In Chemistry


- Atoms join together to form compounds.
 - A compound is a pure substance that is composed of two or more atoms combined in a specific way.
 - Oxygen and hydrogen are atoms/elements; H₂O is a compound.

 A chemical change occurs when the arrangement of atoms in compounds changes to form new compounds.

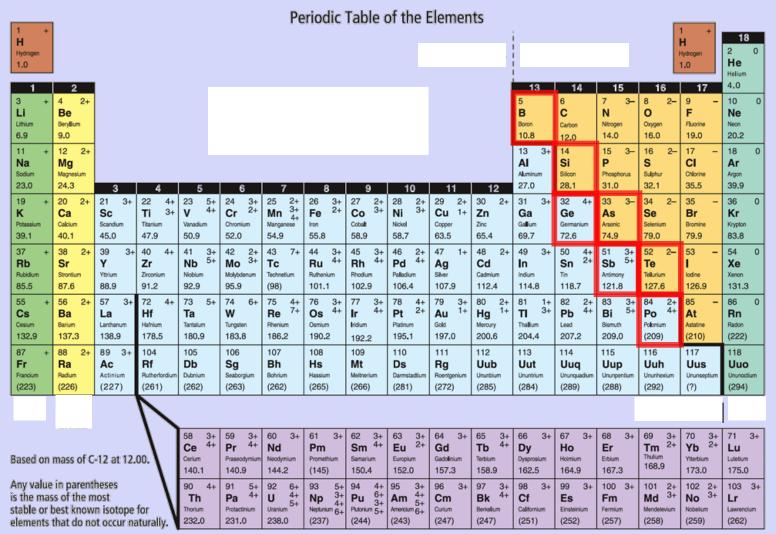
Atomic Theory

Atoms are made up of smaller particles called subatomic particles.

Table 4.1 Subatomic Particles				
Name	Symbol	Electric Charge	Location in the Atom	Relative Mass
Proton	р	1+	Nucleus	1836
Neutron	n	0	Nucleus	1837
Electron	е	1-	Surrounding	1
			the nucleus	

- The nucleus is at the centre of an atom.
 - The nucleus is composed of protons and neutrons.
 - Electrons exist in the space surrounding the nucleus.
 - # of protons = # of electrons in every atom, therefore atoms have NO CHARGE
 - Nuclear charge = charge on the nucleus = # of protons

Atomic number = # of protons = # of electrons


How do I figure out how many protons an atom of carbon has? **Electrons? Neutrons?**

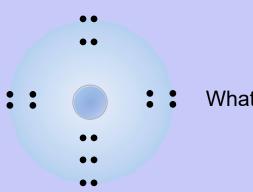
Break

• Pg 60 in workbook

Organization of the Periodic Table

- In the periodic table elements are listed in order by their atomic number.
 - Metals are on the left (the transition metals range from group 3 to group 12), non-metals are on the right, and the metalloids form a "staircase" toward the right side.
 - Rows of elements (across) are called periods.
 - All elements in a period have their electrons in the same general area around their nucleus.
 - Columns of elements are called groups, or families.
 - All elements in a family have similar properties and bond with other elements in similar ways.
 - Group 1 = alkali metals
 - Group 2 = alkaline earth metals
 - Group 17 = the halogens
 - Group 18 = noble gases

Where are the following?

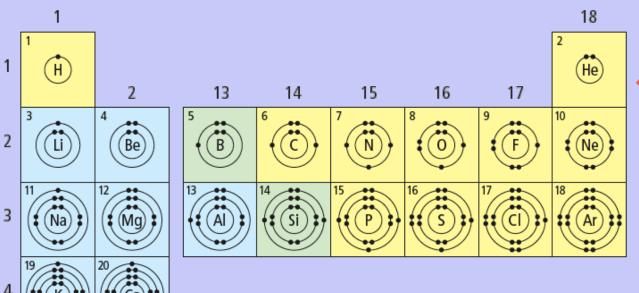

- Atomic number
- Period
- · Group/Family
- Metals
- Non-metals
- Transition metals
- Metalloids
- Alkali metals
- Alkaline earth metals
- Halogens
- Noble gases

Colour Periodic Table

 Use different colours to highlight the main groups of the periodic table.

Bohr Diagrams

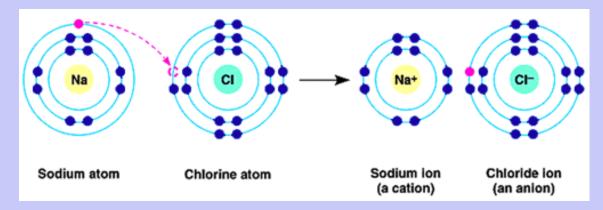
- Bohr diagrams show how many electrons appear in each electron shell around an atom.
 - Electrons in the outermost shell are called <u>valence electrons</u>.
 - Think of the shells as being 3-D like spheres, not 2-D like circles.


What element is this?

- It has 2 + 8 + 8 = 18 electrons, and therefore, 18 protons.
- It has three electron shells, so it is in period 3.
- It has eight electrons in the outer (valence) shell.

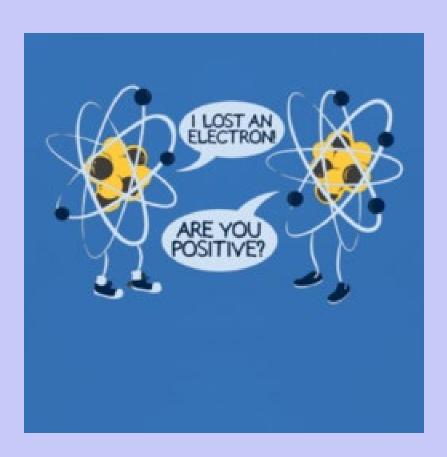
Patterns of Electron Arrangement in Periods and Groups

- Electrons appear in shells in a very predictable manner.
- There is a maximum of two electrons in the first shell, eight in the 2nd shell, and eight in the 3rd shell.
 - The period number = the number of shells in the atom.
 - Except for the transition elements, the last digit of the group number = the number of electrons in the valence shell.


The noble gas
elements have full
electron shells
and are very
stable.

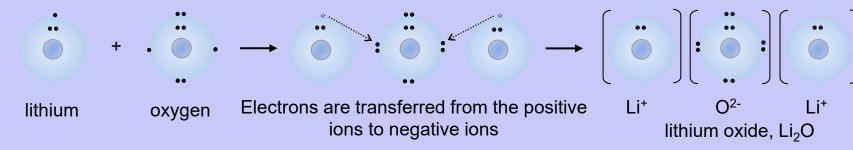
Practice Drawing Bohr Diagrams

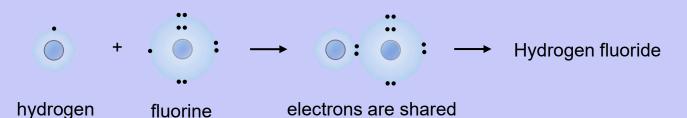
- Bohr diagram worksheet
 - Atoms vs lons
 - Remember, atoms are neutral and ions are charged!


Periodic Table and Ion Formation

- Atoms gain and lose electrons to form bonds.
 - The atoms become electrically charged particles called ions.
 - Metals lose electrons and become positive ions (cations).
 - Some metals (multivalent) lose electrons in different ways.
 - For example, iron, Fe, loses either two (Fe²⁺) or three (Fe³⁺) electrons
 - Non-metals gain electrons and become negative ions (anions).
 - Atoms gain and lose electrons in an attempt to have the same number of valence electrons (electrons farthest from the nucleus) as the nearest noble gas in the periodic table.

Forming Compounds

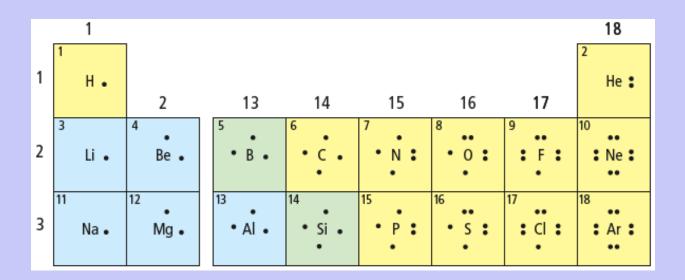

- When two atoms get close together, their valence electrons interact.
 - If the valence electrons can combine to form a low-energy bond, a compound is formed.
 - Each atom in the compound attempts to have the stable number of valence electrons as the nearest noble gas.
 - Metals may lose electrons and non-metals may gain electrons (ionic bond), or atoms may share electrons (covalent bond).
- lonic bonds form when electrons are transferred from positive ions to negative ions.
- Covalent bonds form when electrons are shared between two non-metals.
 - Electrons stay with their atom but overlap with other shells.



Forming Compounds (continued)

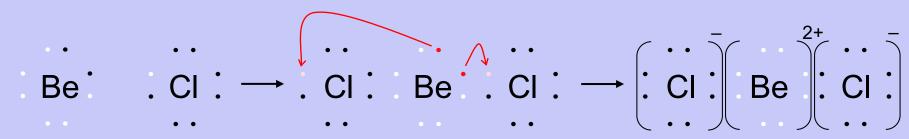
- lonic bonds are formed between positive ions and negative ions.
 - Generally, this is a metal (+) and a non-metal (-) ion.
 - For example, lithium and oxygen form an ionic bond in the compound Li₂O.

- Covalent bonds are formed between two or more non-metals.
 - Electrons are shared between atoms.



Bohr Diagram

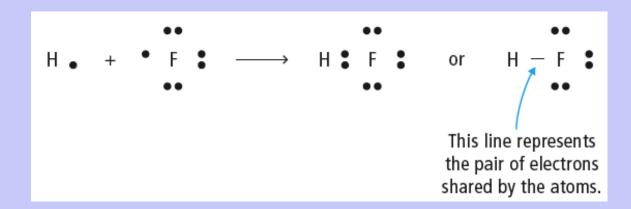
• Pg 61 in workbook


Lewis Diagrams

- Lewis diagrams illustrate chemical bonding by showing only an atom's valence electrons and the chemical symbol.
 - Dots representing electrons are placed around the element symbols at the points of the compass (north, east, south, and west).
 - Electron dots are placed singly until the fifth electron is reached then they are paired.

Lewis Diagrams of Ions

- Lewis diagrams can be used to represent ions and ionic bonds.
 - For positive ions, one electron dot is removed from the valence shell for each positive charge.
 - For negative ions, one electron dot is added to each valence shell for each negative charge.
 - Square brackets are placed around each ion to indicate transfer of electrons.

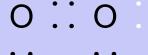

Each beryllium has two electrons to transfer away, and each chlorine can receive one more electron.

Since Be²⁺ can donate two electrons and each Cl⁻ can accept only one, two Cl⁻ ions are necessary.

beryllium chloride

Lewis Diagrams of Covalent Bonds

- Lewis diagrams can also represent covalent bonds.
 - Like Bohr diagrams, valence electrons are drawn to show sharing of electrons.
 - The shared pairs of electrons are usually drawn as a straight line.




Diatomic molecules, like O_2 , are also easy to draw as Lewis diagrams.

Several non-metals join to form diatomic molecules.

Valence electrons are shared, here in two pairs.

This is drawn as a double bond.