Evolutionary Theory Evolves

	Darwin 1859	Modern Synthesis 1942	Integral Model 2012
Variation	Unknown	 Changes in "genes" Random mutations due to copy errors and damage 	 Changes in DNA Mobile DNA Changes in regulation Dynamic Genome Endosymbiosis Hybridization Random mutations
Inheritance	Vertical	Vertical	Vertical Horizontal
Selection	Natural, Artificial, Sexual	Natural, Artificial, Sexual, Drift	Natural, Artificial, Sexual, Drift, Kin. Group
T ime	~ 500 million years	~ 2 billion years	~ 3.7 billion years

What we have so far

- Lamarck's ideas helped Darwin's theories
- Mendel further explained Darwin's theories
- Theories continue to evolve as scientists formulate theories about evolutionary change

Genetic Drift

- Natural Selection is not always necessary for genetic change to occur
- ► Genetic Drift: Random change in the frequency of alleles that occur in SMALL populations
 - In small populations, individuals that carry a particular allele may leave more descendants than others just by chance
 - Over time a series of CHANCE occurrences can cause an allele to become more common in a population.

How does Genetic Drift work?

- It may occur when a small group of individuals colonize a new habitat
 - They may carry alleles in different relative frequencies than the larger population
 - ► This population will be genetically different from the original population due to chance.

Founder effect

- Allele frequencies
 change as a result of
 migration of a small
 subgroup of a population
 - Example: evolution of several hundred species of fruit flies on the Hawaiian Islands
 - All have descended from the original mainland population

What results from Genetic Drift?

- ► Allele frequencies change (evolution)
- In special circumstances, a new or previously rare allele may become common in a population after a few generations
- ► This usually work in small populations ONLY
 - ► Why?
 - Chance events are less likely to affect all members of a very large population

Patterns of Evolution

- Macroevolution
 - ► Large scale evolutionary patterns and process that occurs over long periods of time
 - Extinction
 - ► Gradualism
 - ► Adaptive Radiation (Divergent Evolution)
 - ► Convergent Evolution
 - ► Punctuated equilibrium

Gradual and Rapid Evolutionary Change

- Remember Charles Lyell
 - ► Earth changed slowly and gradually over time
 - Darwin also believed that biological change was also very slow and steady
- Gradualism: The theory that evolutionary change occurs slowly and gradually
- Fossil Record shows that some groups of organisms have changed gradually over time

Equilibrium

- ► Evidence that some species did NOT change gradually
- They did not change very much from the time they appeared in the fossil record to the time they disappeared
- ► They are in a state of equilibrium

- Equilibrium: no large changes are happening to a species
 - ► This is not always the case
- Every now and again something happens to upset the equilibrium and cause rapid changes in organisms in a short time period
- ► Terms relative to the geologic time scale
 - "short" or "rapid" periods of time can still be hundreds, thousands or millions of years
- This is documented in the fossil record.

Punctuated Equilibrium

- Describes the pattern of long stable periods(equilibrium), interrupted by brief periods of rapid change
- Evolution does proceed at different rates for different organisms
- A new species changes most as it buds from a parent species and then changes little for the rest of its existence

Rapid Evolution

- After long periods of equilibrium rapid changes can occur in several ways
 - ▶ 1. When a small population becomes isolated from the main population (genetic drift)
 - ▶ 2. When a small group migrates to a new environment and rapidly evolves to fill empty niches (Darwin's Finches)
 - ▶ 3. Mass extinction: rapid change on earth causes species to vanish
 - ► Global climate change
 - Meteors

Long periods of stability and short episodes of change

Extinctions

- More than 99% of all species that have ever lived are now extinct!
- Reasons
 - Competition for resources, habitat
 - Changing environment
 - ► Natural selection
 - Mass extinctions that wipe out entire ecosystems

Mass Extinctions

- When these events occur many niches are left empty
- The species that remain that are able to survive and reproduce can potentially evolve to fill those empty niches
 - Forming many new species in the process
 - Burst of evolution
 - Adaptive Radiation
- ► The extinction of the dinosaurs cleared the way for the evolution of modern mammals and birds.

5 agents of evolutionary change

5 fingers of evolution

Causes allele frequencies to change (EVOLUTION)

- Non Random Mating: members of the population do not have equal opportunity to produce offspring
 - Organisms select specific traits
- Small Population: Chance takes over (genetic drift)
- Movement: New individuals bring new alleles
 - Gene flow
- Mutations: Mutations could mean new alleles
- ► Natural Selection: creates organisms better adapted to local environment