# **Energy**Transformations



## Energy is transformed in chemical reactions

- RECALL:
- The amount of energy transformed depends on the chemical bonds in the compounds of the chemical reactions.
- In an exothermic reaction, reactants have higher chemical potential energy than the products.
- In an endothermic reaction, reactants have lower chemical potential energy than the products.



#### **Energy is transformed in chemical reactions**



- 1. Are the reactants or the products higher in chemical potential energy?
- 2. Is energy released or absorbed in this reaction?
- 3. Is the reaction exothermic or endothermic?

## Read pg 220 With a partner answer Question #1Inferring on pg 221



#### **Chemical Reactions in Animals and Plants**

- All living things transform chemical potential energy to carry out life's processes.
- Specifically, plants and animals carry out cellular respiration to produce energy in the form of ATP (adenosine triphosphate) for life processes.
- The amount of energy released during CR is comparable to the combustion of methane.
  - However your body does not burn or combust because the overall reaction takes place in small controlled steps

#### **Cellular Respiration**

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + energy$$

Takes place in the mitochondria



## Chemical Reactions in Animals and Plants (cont'd)

- Plants and algae capture the Sun's energy and combine carbon dioxide and water to produce glucose (sugar) and oxygen.
- This is the process of <u>photosynthesis</u>.

$$6CO_2 + 6H_2O + energy \rightarrow C_6H_{12}O_6 + 6O_2$$

- Photosynthesis occurs in the chloroplasts through a series of reactions.
- Light energy is transformed into chemical potential energy stored in the glucose molecule.

#### **Photosynthesis and Cellular Respiration**

Complete the photosynthesis & CR worksheets



#### **Energy Transformation and Fuels**

- Fossil fuels contain large amounts of chemical potential energy.
  - Formed through sedimentation, pressure & heat over millions of years
  - Known as a "non renewable resource"
    - Coal, oil & gas
- Fossil fuels are now extracted and burned through combustion to produce energy
  - carbon dioxide is a by product
- Fossil fuels also contain contaminants such as sulfur and nitrogen that pollute the environment.



#### **Fuel Cells**

- Fuel cells transform chemical energy into electrical energy when hydrogen reacts with oxygen.
- Emits fewer pollutants



#### **Discussion Questions**

1. Where is chemical potential energy in molecules stored?

2. How is chemical potential energy transformed by living things?

3. Why is Carbon dioxide a negative byproduct of fossil fuel combustion?

#### **Energy Flow in Ecosystems**

- Within an organism's niche, the organism interacts with the ecosystem by:
  - Obtaining food from the ecosystem
  - Contributing energy to the ecosystem







#### Roles in an ecosystem

- Plants are called producers because they produce carbohydrates from carbon dioxide, water, and the Sun's energy.
- Consumers get their energy by feeding on producers or other consumers.
- Decomposition is the breakdown of wastes and dead organisms by organisms called decomposers through the process of biodegradation.





## Representing Energy Flow and Loss in an ecosystem

#### Food Chains

- Represent one pathway of energy in an ecosystem
- Each step in a food chain is a trophic level
  - Producers = 1st trophic level
  - Primary consumers = 2nd trophic level
  - Secondary consumers = 3rd trophic level
  - Tertiary consumers = 4th trophic level



## Representing Energy Flow and Loss in an ecosystem

- Food Web
  - Represent interconnected food chains in an ecosystem
    - Arrows indicate the flow of energy and nutrients
    - The arrows eventually lead to a top consumer



#### Food Pyramids

- Represent energy loss in an ecosystem
- Energy enters at the producers, where there is a large amount of biomass (mass of living things) and therefore energy.
- It takes large quantities of organisms in one level to meet the energy needs of the next level.
- Each level loses large amounts of the energy it gathers through basic processes of living.
- 80 90 percent of energy taken in by consumers is used in chemical reactions in the body and is lost as thermal energy.
- There is very little energy left over for growth or increase in biomass.



#### **Food Pyramids**

- Each level in the energy pyramid = a loss of 90 percent of total energy available.
- Lower levels have much larger populations than upper levels.
- This shows the importance of maintaining large, biodiverse populations at the lowest levels of the

food pyramid.



#### Question?

1. What type of energy transformations are occurring within food webs, food chains & food pyramids?

2. Where should the most biomass exist in a healthy ecosystem?

3. Why are there less top consumers than primary consumers in an ecosystem?

#### Time out

#### Modelling a local ecosystem

