

Section 1

GENES PASS ON INHERITED TRAITS FROM PARENT TO OFFSPRING

- Genetics: field of biology that studies heredity, or the passing of traits from parents to offspring
- Trait: an inherited characteristic, such as eye colour or hair colour

Tongue Roller

Non-roller

Widow's Peak

Attached earlobes (left)

Hitch-hiker's thumb

Mid-digital hair

Dimple in chin

Freckles

Morton's Toe

FIRST MODERN EXPERIMENTS IN GENETICS

 Gregor Mendel discovered how traits are inherited by experimenting with pea plants.

FIRST MODERN EXPERIMENTS

- Pea plants reproduce by sexual reproduction by self pollination
 - Self pollination occurs when the male gamete within a flower combines with the female gamete in the same flower
 - Cross pollination occurs when the male gamete of one flower is combined with the female gamete of a different flower.

- Mendel deliberately cross pollinated plants and was able to control which plants with certain traits were producing offspring.
- Through this research he formed hypotheses about how traits were inherited and became the founder of modern genetics

MENDEL'S EXPERIMENTS

- Mendel used truebreeding pea plants that produce offspring with only one form of a trait.
- true-breeding
- When a purple pea plant and a white pea plant were combined, they produced new plants called offspring in the first generation (F_1) .
- All F₁ generation plants were purple

Figure 1.10: These are the results of Mendel's cross involving true-breeding pea plants with purple flowers and true-breeding pea plants with white flowers.

WHY WERE ALL THE FLOWERS PURPLE?

- Mendel wanted to know what happened to the white flower trait that seemed to have disappeared.
- Why were there no white flowers in the F₁ generation?

MENDEL'S EXPERIMENTS

- Mendel allowed the F₁
 generation to self fertilize
- In the second generation (F₂) Mendel observed that the white flower trait reappeared.
- Each time the experiment was conducted the F₂ generation had a ratio of approx. 3:1 purple to white flowers

- Mendel repeated experiments with other traits such as seed colour, seed shape and stem length
- Each time one trait disappeared in the first generation and reappeared in the second

- Based on his observations, Mendel proposed:
 - Each plant has two factors for a trait.
 - Each parent gives one factor for each trait.
 - One factor dominates over the other if present.
 - The "factors" Mendel referred to in his conclusions are what we now call alleles.

HOMOLOGOUS CHROMOSOMES AND GAMETES

- Chromosomes may carry different alleles.
- During gamete formation, pairs of homologous chromosomes separate.
- Each gamete receives one member of each pair, so it receives only one allele of each pair.
- During fertilization when the male and female gametes meet, homologous chromosomes and alleles are paired again.

Possible haploid gametes

THE LAW OF SEGREGATION

- Law of segregation: states that alleles for a trait separate during meiosis
- Each gamete carries one allele for each trait.
- During fertilization, each gamete contributes an allele for each trait.

DOMINANT AND RECESSIVE ALLELES

- Alleles that are dominant will always be expressed if present.
- Alleles that are recessive will be expressed only if there are two recessive alleles.
- To track alleles from generation to generation, geneticists have devised a system to represent alleles.
 - Dominant alleles are represented with a capital letter.
 - Recessive alleles are represented with a lower-case letter.

- Purple flower colour is dominant so it is assigned "B"
- White flower colour is recessive so it is assigned "b"
- Purple = BB or Bb
- White = bb

Figure 1.11: These are the results of Mendel's cross involving true-breeding pea plants with purple flowers and pea plants with white flowers.

- B dominant brown eye allele
- **b** recessive blue eye allele

- BB brown eyes
- Bb brown eyes
- bb blue eyes

DOMINANT OR RECESSIVE ACTIVITY

- Does it taste bitter?
 - PTC paper

RESULTS

- If the number of people for whom the PTC tasted bitter was about 75%, then the results should confirm that the trait is dominant.
- Freckles are dominant, but student results may not have confirmed this because sometimes dominant traits are not the more common trait expressed phenotypically in a population.

GENOTYPES AND PHENOTYPES

- As the expression of the trait doesn't necessarily indicate the alleles for a characteristic, scientists need to distinguish between the physical trait and its genetic make up
 - Phenotype: the physical description of an organism's trait
 - Brown eyes, brown hair etc
 - Genotype: the specific combination of alleles an organism has for a trait
 - Bb, BB, bb
 - Homozygous: an organism with two of the same alleles for a particular trait
 - **Heterozygous:** an organism with two different alleles for a particular trait

- There are three possible genotypes:
 - 1) Homozygous dominant: two dominant alleles
 - 2) Homozygous recessive: two recessive alleles
 - 3) *Heterozygous*: one dominant allele and one recessive allele

DISCUSSION QUESTIONS

- 1. Write a definition for genetics in your own words.
- 2. Seed shape in pea plants can either be round or wrinkled. The allele for round shape is indicated by *R*. Is round seed shape dominant or recessive?
- 3. The allele for freckles is indicated by *F*. What is the genotype of a person who is heterozygous for freckles?

TRAIT ACTIVITY

- Determining your genotype/phenotype
 - Can we necessarily determine your genotype?
 - When can we? When can't we?

■ Alien Babies ©

