Acids and Bases

Classifying Compounds

Ionic/Covalent

Acidic/Basic

Exothermic /Endothermic

Classifying Compounds

SR, DR, D, S, C

Properties of Acids/Bases

Acids Bases Sour Bitter Corrosive Slippery feel Soap, cleaning In common products, eggs foods/drinks

Acids and Bases

- Many familiar compounds are acids or bases.
 - Classification as acids or bases is based on chemical composition.

- Acids and bases can be very dangerous.
 - Both can be very corrosive.
 - NEVER try to identify an acid or base by taste or touch!

pH Scale

- The strength of acids and bases in measured on the pH scale.
 - Power of hydrogen
 - Number scale for measuring how acidic or basic a Solution is
 - pH below 7 = acidic, pH above 7 = basic, pH 7 = neutral
 - * 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Acids Neutral Bases
 - Each decrease of 1 on the pH scale indicates 10× more acidic
 - For example, pH 4 is 10 times more acidic than pH 5.
 - pH 3 is 1000 times more acidic than pH 6.

pH Scale

pH Indicators

The pH of acids and bases cannot be determined by sight.

 Instead, pH is measured by other chemicals called indicators or by a pH meter that measures the electrical conductivity of the solution.

Indicators

- Many acidic and basic solutions are colourless therefore there needs to be a way to identify what type of compound you have
- pH indicators change colour based on the solution they are placed in.
 - Litmus is the most common indicator, and is used on litmus paper.
 - **Extracted from lichens (algae/fungus)**
 - Two colours of litmus paper: Blue and Red
 - Blue litmus turns red in an acidic solution
 - Red litmus turns blue in a basic solution
 - BAR → Blue Acidic Red

- Universal indicator contains many indicators that turn different colours at different pH values (can be in liquid form, or on paper strips like litmus).
 - A pH meter uses electrical probes to measure how solutions conduct electricity.
 - Indicators change colour at different pH values, so different indicators are used to identify different pH values.
 - Bromothymol blue for pH 6 7.6, phenolphthalein for pH 8.2 10.
 - Many natural sources, such as beets and cabbage, are also indicators.

Time OUT

Page 84-85 in workbook

Acids

- If you know a compound's chemical formula, you may be able to identify whether it as an acid.
 - Acids often behave like acids only when dissolved in water
 - Therefore, acids often are written with symbol (aq) = aqueous = water.
 - Aqueous means dissolved in water

Sulfurio acid is used in batteries

Naming Acids

- The chemical formula of an acid **USUAlly** starts with hydrogen (H).
 - Example:

HCI = hydrogen chloride

HCI_(aq) = hydrochloric acid

Exception:

Acids with a carbon usually have the C written first with the H on the end of the compound

CH₃COOH_(aq) = acetic acid (vinegar)

Naming acids

- If no state of matter is present then compound is named via ionic rules
 - **Example:** HF: Hydrogen fluoride
- If stated to be aqueous (aq)
 - Write out the name in regular ionic form
 - Hydro minus "gen" + non metal minus-ide
 - Add "ic acid" suffix
 - Example
 - HF_(aq) = hydrogen fluoride = hydrofluoric acid

- In order to name an acid you must first recognize if oxygen is present or absent
 - If Oxygen is present
 - Write out name in regular ionic form

 If it starts with hydrogen and ends with "ate"
 - Drop hydrogen and add "ic acid"
 - H₂CO_{3(aq)} = hydrogen carbonate = carbonic acid
 If it starts with hydrogen and ends with "ite"
 Drop hydrogen and add "ous acid"
 - H₂SO_{3(aq)} = hydrogen sulphite = sulphurous acid

Naming Acids:

• You can recognize an acid by the ____ on the ____ side of the formula (ex. HCl)

- Time out
- Page 86 in workbook

Bases

- If you know a compound's chemical formula, you may be able to identify it as a base.
 - Bases often behave like bases only when dissolved in water.
 - Therefore, bases are often written with the symbol (aq) = aqueous = water.
- The chemical formula of a base usually ends with hydroxide (OH).
- Bases can be gentle or very caustic.
- **Examples of common bases:**
 - ◆ NaOH_(aq)
 - Mg(OH)_{2(aq)}
 - Ca(OH)_{2(aq)}
 - NH₄OH_(aq)

Naming Bases:

- You can recognize a base by the _____ on the ____ side of the formula (ex. NaOH)
- Naming bases follows the ______ we learned in Chapter 4

Production of Ions

- Acids and bases can conduct electricity because they release ions in solution.
 - Acids release hydrogen ions, H⁺.
 - Bases release hydroxide ions OH⁻.
- The pH of a solution refers to the concentration of ions it has.
 - Square brackets are used to signify concentration, [H⁺], [OH⁻]
 - High [H⁺] = low pH, very acidic
 - High [OH-] = high pH, very basic
 - ◆ A solution cannot have BOTH high [H⁺] and [OH⁻]; they cancel each other out and form water. This process is called neutraliztion.
 - $H^+ + OH^- \rightarrow H_2O$

Properties of Acids and Bases

Table 5.6 Properties of Acids and Bases			
Property	Acid	Base	
Taste CAUTION: Never taste chemicals in the laboratory.	Acids taste sour. Lemons, limes, and vinegar are common examples.	Bases taste bitter. The quinine in tonic water is one example.	
Touch	Many acids will burn	Bases feel slippery.	
CAUTION: Never touch chemicals in the laboratory with your bare skin.	your skin. Sulfuric acid (battery acid) is one example.	Many bases will burn your skin. Sodium hydroxide (lye) is one example.	
Indicator tests	Acids turn blue litmus paper red.	Bases turn red litmus blue.	
	Phenolphthalein is colourless in an acidic solution.	Phenolphthalein is colourless in slightly basic solutions and pink in moderate to strongly basic solutions.	
Reaction with some metals, such as magnesium or zinc	Acids corrode metals.	No reaction	
Electrical conductivity	Conductive	Conductive	
рН	• Less than 7	More than 7	
Production of ions	Acids form hydrogen (H ⁺) ions when dissolved in solution.	Bases form hydroxide (OH ⁻) ions when dissolved in solution.	

Take the Section 5.1 Quiz

See page 229

(c) McGraw Hill Ryerson 2007

- Properties of Acids and Bases (pg 83 workbook)
- Homework
- Pg 87-88 in workbook
- Bring in something to test for tomorrow
 - Suspected acid/base
 - ◆ BE CAREFUL and read safety warnings if bringing in cleaning products

Reaction Type # 6: Neutralization (Acid Base Reactions)

- Neutralization reactions occur when an acid (most compounds starting with H) and a base (most compounds ending in OH, or beginning with NH₄) react to form a salt and water.
 - Acid + base → salt + water
 - **HX + MOH** \rightarrow **MX + H**₂**O** where **X** and **M** are elements
 - Sulfuric acid is used to neutralize calcium hydroxide:
 - $H_2SO_4 + Ca(OH)_2 \rightarrow CaSO_4 + 2H_2O$
 - Phosphoric acid helps to neutralize the compounds that cause rust, such as iron(II) hydroxide.
 - $H_3PO_4 + 3Fe(OH)_2 \rightarrow Fe_3(PO_4)_2 + 6H_2O$

5.2 Salts

- Salts are ionic compounds formed when acids and bases react.
- Table salt, NaCl, is found in sea water, salt lakes or rock deposits.
 - lodine is now added to salt to minimize goiter (a disease of the thyroid).
- NaCl is only one kind of salt.
 - A salt is made up of a positive ion from a base and a negative ion from an acid.

Pg 91&92 in workbook & Neutralization Practice

Table 6.1 Summary of Chemical Reactions		
Reaction Type	Reactants and Products	Notes on the Reactants
Synthesis (combination)	A + B → AB	• Two elements combine (Figure 6.9).
Decomposition	AB → A + B	• One reactant only (Figure 6.9)
Single replacement		
If A is a metal	$A + BC \rightarrow B + AC$	One element and one compound
If A is a non-metal	$A + BC \rightarrow C + BA$	
Double replacement	$AB + CD \rightarrow AD + CB$	Two compounds react.
Neutralization (acid-base)	HX + MOH → MX + H ₂ O	Acid plus base
Combustion	$C_XH_Y + O_2 \rightarrow CO_2 + H_2O$	Organic compound with oxygen

Lets Practice