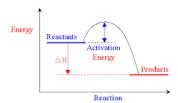
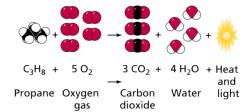
Changes in Energy

Energy and Chemical Reactions

- Chemical Energy Energy ______ in the chemical bonds of substance.
- Chemical reactions always involve energy _______.


with enough energy to


Activation Energy

• The ______ to break the bonds in the reactants for a chemical reaction to occur.

Input of Energy

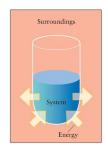
- Many chemical reactions require an initial input of energy
 - Ex: _____
 - Imagine if no activation energy was required, what would happen?

Will the reaction continue?

- - The energy released during the reaction______
 the energy needed to overcome the activation energy

How is Energy Transferred?

- All chemical reactions are accompanied by ______ in energy
- These reactions are crucial to life
 - Photosynthesis and Cellular Respiration

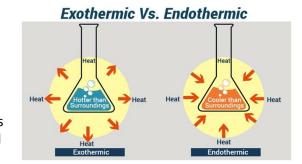

Photosynthesis and Cellular Respiration unlight plant cell photosynthesis glucose and oxygen water glucose and oxygen PHOTOSYNTHESIS GELULIAR RESPIRATION **Shert Amed

Energy Changes

• Transfers between the system and the surroundings

_	: materials involved w	vith a	chemical	reaction

- _____: everything else in the universe



Law of Conservation of Energy

- Total energy of the universe is
 - Energy cannot be created or destroyed
 - Energy that leaves the system goes into the surroundings
 - Energy that enters the system is from the surroundings

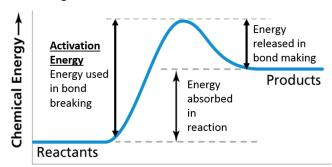
Endothermic and Exothermic Reactions

- Energy must be absorbed to
- Energy is_____ when bonds form
- By comparing the total energy used to break bonds, to the total energy released when bonds form, you can determine what type of chemical reaction has occurred

- **Step 1**: Energy must be______ to break chemical bonds of reactants:
- Step 2: Energy is _____ when new chemical bonds are made in the products:

Classification

- ______: If more energy is **RELEASED** to the surroundings than absorbed by the system
 - More energy released from formation of bonds
- ______: If more energy is **absorbed by the system** than is **RELEASED** to the surroundings
 - More energy required to break bonds

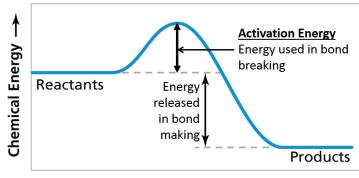

Temperature

- **Exothermic**: energy is *released*
 - Exo-=
 - Ex: Burning of gasoline
- **Endothermic**: energy is *absorbed*
 - Endo- = _____
 - Ex: Cooking of pancakes

Temperature Change

 By monitoring changes in temperature you can determine what type of reaction is occurring

• Endothermic Diagram



Reaction Progress →

Endothermic – more energy is taken in to break the bonds in the reactants than released by the bonds being formed in the products. Therefore, energy is absorbed.

- Heat () taken in
- Temperature of the substance ______
- Products feel _____
- Exothermic Diagram

ENDOTHERMIC OR EXOTHERMIC?

Reaction Progress →

Exothermic - More energy is released when the products where formed than energy was used to break bonds in the reactants. Therefore, a net release of energy.

- Heat (energy) given off
- Temperature of the substance _____
- Products feel _____

ENDOTHERMIC OR EXOTHERMIC?

 $6\text{CO}_2 + 6\text{H}_2\text{O} + \text{Energy} \longrightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2$

ENDOTHERMIC!

 $CH_4 + 2O_2 \implies CO_2 + 2H_2O + Energy$

EXOTHERMIC!