
4.2 Names and Formulas of Compounds

- lonic <u>compounds</u> are made up of **positive** and **negative** ions.
 - All of the positive and negative ions organize in a pattern.
 - Negative-positive attract.
 - Negative-negative and positive-positive repel.
 - Ionic compounds form from the inside out as solid crystals.
 - Ionic compounds are like a solid stack of bricks.
 - A salt shaker contains thousands of small pieces of NaCl.

- Covalent <u>molecules</u> share electrons.
 - There is generally no order to the formation of covalent molecules.
 - These molecules clump together as solids, liquids or gases.
 - http://www.youtube.com/watch?v=NgD9yHSJ29I

Water, H₂O

- Turn to page 185
- Get into partners
- On a seperate piece of paper complete the following
 - What to do #1-4
 - What did you find out # 1-4

You have 10 minutes to complete

The Chemical Name and Formula of an Ionic Compound

- lonic compounds are composed of positive ions and negative ions.
 - The name of an ionic compound = positive ion (metal) + negative ion(non mental) -ide.
 - The suffix "ide" is added on to the negative ion
 - For example, an ionic compound forms between magnesium and oxygen.
 - The positive ion is the first part of the name, <u>magnesium</u>.
 - The negative ion forms part of the ending of the name, oxygen.
 - Add -ide to the end of the name to form magnesium oxide.

Magnesium oxide is used as a drying agent.

- Lets try to name some compounds
 - Pg 187 odds (a, c, e, g etc)

Table 4.5 Naming Ionic Compounds Containing Two Elements

Steps	Examples		
	Cal ₂	Na ₃ P	
1. Name the metal ion.	 The metal ion is Ca²⁺. The ion's name is given in the periodic table as calcium. 	 The metal ion is Na⁺. The ion's name is given in the periodic table as sodium. 	
2. Name the non-metal ion by ending the element name with the suffix "ide."	 The non-metal ion is The element's name is iodine. Changing the name to end with the suffix ide gives iodide. 	 The non-metal ion is P³⁻. The element's name is phosphorus. Changing the name to end with the suffix "-ide" gives phosphide. 	
3. Write the name of the compound.	calcium iodide	sodium phosphide	

Practice Problems

Write the names of the following ionic compounds.

1. (a) Li₃N

(f) AlBr₃

- - (b) $MgBr_2$ (g) CaI_2
- (k) Ca₃P₂ (l) Na₂O

- (c) Ag_2O (h) GaI_3 (m) CdS

(d) RbF

(i) Ag_3N

(n) Sr_3P_2

(e) AgI

(j) MgSe

(o) CsF

- Ionic formulas are based on the ions of the atoms involved.
 - Remember the naming principles above.
 - For example, what is the name of Ca₃N₂?
 - Ca, the positive ion, is calcium.
 - N, the negative ion, is nitrogen.
 - Drop the end of the anion and add -ide.
 - Calcium nitride
- The subscript gives the ratio of each type of ion in the compound.
 In ionic compounds this is always in lowest terms.
 - In the above example there are 3 calciums for every 2 nitrogens
 - ******** LOWEST TERMS ONLY FOR IONIC COMPOUNDS************

The Chemical Name and Formula of an Ionic Compound (continued)

- Writing formulas for ionic compounds:
 - In an ionic compound, the positive charges balance out the negative charges.
 - The overall charge will be Zero
 - ◆ The ratio of positive:negative charges gives the proper formulauicklime" was
 - The ratio is always written in reduced form.

For example, what is the formula for magnesium phosphide

- Mg 2+ P3-
- Lowest common multiple of 2 and 3 is 6

Try the formula for calcium oxide.

Calcium oxide, also known as nul quicklime" was once produced by cooking limestone in ancient kilns.

See page 188

- calcium is Ca²⁺ oxygen is O²⁻
- 1 Ca²⁺ ion and 1 O²⁻ions
- Ca₂O₂, which is simplified and written as CaO

Crossover method

Refer to Handout

Practice problems

- Page 188
 - #1 evens
 - #2 odds

Steps	Examples	
•	aluminum fluoride	magnesium nitride
1. Identify each ion and its charge.	aluminum: Al ³⁺ fluoride: F ⁻	magnesium: Mg ²⁺ nitride: N ³⁻
Determine the total charges needed to balance positive with negative.	Al^{3+} : = +3 F^{-} : -1 -1 -1 = -3	Mg^{2+} : + 2 + 2 + 2 = +6 N^{3-} : -3 -3 = -6
3. Note the ratio of positive ions to negative ions.	1 Al ³⁺ ion for every 3 F ⁻ ions	3 Mg ²⁺ ions for every 2 N ³⁻ ions
4. Use subscripts to write the formula. A "1" is not shown in the subscripts.	AIF ₃	Mg ₃ N ₂

Practice Problems

- **1.** Write the formulas of the compounds containing the following ions.
 - (a) Na⁺ with Br⁻

(d) Al^{3+} with S^{2-}

(b) Zn^{2+} with I^-

(e) Ca^{2+} with O^{2-}

(c) K^+ with S^{2-}

- (f) Al^{3+} with P^{3-}
- 2. Write the formulas of the following ionic compounds.
 - (a) strontium nitride

(i) zinc oxide

(b) lithium oxide

(j) aluminum iodide

(c) silver sulfide

(k) lithium fluoride

(d) barium phosphide

(l) sodium sulfide

(e) sodium nitride

- (m) zinc phosphide
- (f) potassium selenide
- (m) zinc pnospnide

(1) potassium seieni

(n) magnesium chloride

(g) cesium sulfide

(o) rubidium bromide

(h) aluminum nitride

Formula of an Ionic Compound with a Multivalent Metal

- Some transitional metals are <u>multivalent</u>, meaning they have more than one ion form.
 - On the periodic table, the most common form of the ion is listed on top.
 - In the name of the compound, Roman numerals are used following the positive ion to indicate which ion was used.
 - For example, what is the formula manganese (III) sulphide?
 - This manganese is Mn³+. sulfur is S²-

25 2+ Mn 3+ 4+
Manganese
54.9

22 4+ **Ti** 3+
Titanium
47.9

- Try the name for TiF₄
 - titanium is Ti⁴⁺ or Ti³⁺

fluorine is F-

- 1 Ti⁴⁺ ion and 4 F⁻ ions
- titanium (IV) fluoride

See pages 189 - 191

- Lets try some
 - Page 190
 - Practice problems
 - Evens

Table 4.9 Writing Formulas of Compounds Containing a Multivalent Metal

Steps	Examples	
•	manganese(IV) sulfide	cobalt(III) oxide
1. Identify each ion and its charge.	manganese(IV): Mn ⁴⁺ sulfide: S ²⁻	cobalt(III): Co ³⁺ oxide: O ²⁻
2. Determine the total charges needed to balance positive with negative.	Mn^{4+} : = +4 S^{2-} : -2 -2 = -4	Co^{3+} : + 3 + 3 = +6 O^{2-} : -2 -2 -2 = -6
3. Note the ratio of positive ions to negative ions.	1 Mn ⁴⁺ ion for every 3 S ²⁻ ions	2 Co ³⁺ ions for every 3 O ²⁻ ions
4. Use subscripts to write the formula. A "1" is not shown in the subscripts.	MnS ₂	Co ₂ O ₃

Practice Problems

- 1. Write the formulas of the following compounds containing multivalent metals.
 - (a) copper(I) nitride
 - (b) iron(II) phosphide
 - (c) manganese(II) oxide
 - (d) manganese(IV) oxide
 - (e) chromium(II) bromide
 - (f) chromium(III) bromide
 - (g) lead(IV) chloride
 - (h) iron(III) phosphide

- (i) tin(II) sulfide
- (j) tin(II) nitride
- (k) tin(IV) nitride
- (1) mercury(II) fluoride
- (m) copper(I) iodide
- (n) copper(II) iodide
- (o) copper(II) selenide

Page 191

- Practice problems
 - odds

Table 4.10 Naming Ionic Compounds Containing a Multivalent Metal

Steps	Examples	
•	Au ₃ N	PdS ₂
1. Identify the metal.	gold (Au)	palladium (Pd)
Verify that it can form more than one kind of ion by checking the periodic table.	Au ⁺ and Au ³⁺	Pd ²⁺ and Pd ⁴⁺
3. Determine the ratio of the ions in the formula.	Au ₃ N means 3 gold ions for every 1 nitride ion.	PdS ₂ means 1 palladium ion for every 2 sulfide ions.
Note the charge of the negative ion from the periodic table.	The charge on the N ³⁻ ion is 3	The charge on the S ²⁻ ion is 2
5. The positive and negative charges must balance out. Determine what the charge needs to be on the metal ion to balance the negative ion.	Each of the 3 gold ions must have a charge of 1+ to balance the 1 nitride ion with a charge of 3—. Therefore the name of the gold ion is gold(I).	The 1 palladium ion must have a charge of 4+ to balance the 2 sulfide ions that each have a charge of 2 Therefore, the name of the palladium ion is palladium(IV).
6. Write the name of the compound.	gold(I) nitride	palladium(IV) sulfide

Practice Problems

Each of these compounds contains a multivalent metal ion. That means that the name of the metal ion will contain a Roman numeral, which you will need to determine. Write the names of the following compounds.

1. (a) Fe_2O_3

 $(f) Sn_3P_4$

(k) NiS

(b) PbF₄

(g) MnS

 $(1) \text{ Mo}_2\text{O}_3$

(c) FeI₂

(h) MnS₂ (i) VCl₅ (m)UCl₆ (n) ReF₇

 $\begin{array}{c} \text{(d) HgI}_2 \\ \text{(e) Hg}_3 \text{N}_2 \end{array}$

(j) Ni₂S₃

(o) TiS₂

Polyatomic Ions

- Some ions, called polyatomic ions, are made up of several atoms joined together with covalent bonds.
 - ◆ The whole group has a + or charge, not the individual atoms.

What is the formula of sodium sulphate? Na^+ and SO_4^{2-} Na_2SO_4 What is the name of the compound KCIO? K^+ = potassium CIO^- = hypochlorite

potassium hypochlorite

Table 4.11 Names, Formulas, and Charges of Some Polyatomic Ions			
Positive Ions	Negative Ions		
NH ₄ ⁺ ammonium	CH_3COO^- acetate CO_3^{2-} carbonate CIO_3^- chlorate CIO_2^- chlorite CrO_4^{2-} chromate CN^- cyanide $Cr_2O_7^{2-}$ dichromate	HCO ₃ hydrogen carbonate, bicarbonate HSO ₄ hydrogen sulfate, bisulfate HS hydrogen sulfide, bisulfide HSO ₃ hydrogen sulfite, bisulfite OH hydroxide CIO hypochlorite NO ₃ nitrate	NO ₂ - nitrite ClO ₄ - perchlorate MnO ₄ - permanganate PO ₄ - phosphate PO ₃ - phosphite SO ₄ - sulfate SO ₃ - sulfite

See pages 192 - 193

Lets Practice

- Page 193
 - #1 Evens
 - #2Odds

Table 4.12 Writing the Formula of a Compound with Polyatomic Ions

Steps	Examples		
•	manganese(III) chlorate	ammonium sulfate	
Identify each ion and its charge.	manganese(III): Mn ³⁺ chlorate: CIO ₃ ⁻	ammonium: NH ₄ ⁺ sulfate: SO ₄ ²⁻	
Determine the total charges needed to balance positive with negative.	Mn^{3+} : = +3 ClO_3^- : -1 -1 -1 = -3	NH_4^+ : +1 +1 = +2 SO_4^{2-} : = -2	
3. Note the ratio of positive ions to negative ions.	1 Mn ³⁺ ion for every 3 ClO ₃ ⁻ ions	2 NH ₄ ⁺ ions for every 1 SO ₄ ²⁻ ion	
4. Use brackets around ions to correctly show the ratio of ions.	(Mn)(CIO ₃) ₃	(NH ₄) ₂ (SO ₄)	
5. Use subscripts and brackets to write the formula. Omit brackets if (- 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	Mn(CIO ₃) ₃	(NH ₄) ₂ SO ₄	

Practice Problems

Refer to Table 4.11, Names, Formulas, and Charges of Some Polyatomic Ions, as you do these problems.

- **1.** Write the names of the following compounds with polyatomic ions.
 - (a) KCH₃COO

- (f) Fe(OH)₃
- (b) Ca(CH₃COO)₂
- $(g) K_2 CrO_4$

(c) $(NH_4)_3P$

needed.

(h) $K_2Cr_2O_7$

(d) $(NH_4)_3PO_4$

(i) Ca(HCO₃)₂

(e) $Al(OH)_3$

- (j) $Mg_3(PO_4)_2$
- 2. Write the formulas of the following compounds with polyatomic ions.

 (f) lead(II) perchlor
 - (a) potassium permanganate
- (f) lead(II) perchlorate
- (b) sodium chromate
- $(g) \ iron(III) \ hydrogen \ sulfide$
- (c) ammonium nitrate
- (h) vanadium(V) nitrate
- (d) lithium hydroxide
- (i) magnesium acetate
- (e) aluminum hydroxide
- (j) tin(II) cyanide

Names and Formulas of Covalent Compounds

- Covalent compounds, also called <u>molecules</u>, rely on the chemical formula to reveal the components of the molecule.
 - Covalent compounds are made up of two or more non-metals.
 - Names may reveal the components, but often they do not.
 - Subscripts mean something different in covalent compounds
 - lonic compounds subscripts show the smallest whole-number ratio between the ions in the compound.
 - Covalent molecules have subscripts that show the actual number of atoms in the molecule.
 - Nitrogen monoxide vs dinitrogen dioxide

Naming Binary Covalent Compounds

- Binary covalent compounds (two non-metal atoms)
 use a system of prefixes.
 - Covalent compounds may have many or few atoms sharing electrons.
 - CH_4 = methane and $C_{25}H_{52}$ = candle wax
 - Prefixes are often used before the atom name to indicate the number of atoms in the molecule.
 - If there is only one of the first atom, no prefix is needed (ONLY FOR FIRST ATOM)
 - CO = carbon monoxide, CO₂ = carbon dioxide
 - Write the most metallic atom (farthest left) first
 - Add -ide to theend of the second atom's name
 - What is the chemical formula for the molecule trinitrogen tetrachloride?
 - N₃Cl₄
 - What is the name of the molecule Si₃P₆?
 - Trisilicon hexaphosphide

Table 4.13 Prefixes Used in Naming Binary Covalent Compounds

Prefix	Number
mono-	1
di-	2
tri-	3
tetra-	4
penta-	5
hexa-	6
hepta-	7
octa-	8
nona-	9
deca-	10

See pages 194 - 195

Practice

- Page 195
 - # 1 **Evens**
 - #2 Odds

Table 4.16 Hints for Writing Names of Binary Covalent Compounds

Formula	Name	Hints for Writing Names
CS ₂	carbon disulfide	Do not use a prefix when there is only one atom of the first element.
CCl ₄	carbon tetrachloride	Do not use a prefix when there is only one atom of the first element.
P ₄ O ₁₀	tetraphosphorus decaoxide	Do not reduce the name to diphosphorus pentoxide.

Table 4.14 Writing the Names of Binary Covalent Compounds

Steps	Examples		
	со	N_2O_3	
Name the left most element in the formula first.	• The first element is C (carbon).	• The first element is N (nitrogen).	
2. Name the second element, making sure the element name ends with the suffix "ide."	The second element is 0 (oxygen).It becomes oxide.	The second element is O (oxygen).It becomes oxide.	
 3. Add a prefix to each element's name to indicate the number of atoms of each element in the compound. Exceptions to rule 3: If the first element has only one atom, do not add a prefix. The prefix "mono-" is shortened to "mon-" if it is placed before "oxide." 	 Do not use a prefix when there is only one atom of the first element. The compound's name is carbon monoxide. 	 There are two (di-) nitrogen atoms and three (tri-) oxygen atoms. The compound's name is dinitrogen trioxide. 	

Practice Problems

- 1. Write the names of the following compounds.
 - (a) N₂O

(f) N₂O₄

(b) CO₂

(g) P_4S_{10}

 $(c) PI_3$

(h) S_2F_{10}

(d) PCl₅

(i) NI₃

(e) SO₂

- (j) NO
- 2. Write the formulas of the following compounds.
 - (a) nitrogen tribromide
- (f) sulfur trioxide
- (b) sulfur hexafluoride
- (g) phosphorus pentabromide
- (c) dinitrogen tetrasulfide
- (h) diiodine hexachloride
- (d) oxygen difluoride

- (i) dichlorine monoxide
- (e) carbon tetraiodide
- (j) xenon hexafluoride

Comparing Ionic and Covalent Compounds

- To determine whether a compound is ionic or covalent:
 - 1. Examine the formula.
 - Ionic compounds start with a metal or the ammonium ion.
 - Covalent compounds start with a non-metal.
 - 2. If the compound is ionic:
 - Check the metal to see if it is multivalent (add a Roman numeral if it is multivalent). Naming starts with the name of the metal atom.
 - If it ends with a single non-metal, naming will just end in -ide.
 - If it ends in a polyatomic ion, look up the name/formula.
 - 3. If the compound is covalent:
 - Use the prefix system of naming if the compound is binary and does not start with hydrogen.
 - If there are more than two different elements, or it starts with H, there is probably a different, simpler name for the covalent molecule.

See pages 196 - 197

Practice

- Page 197
 - #1 Evens
 - #2 Odds

Practice Problems

- Identify each of the following compounds as either ionic or covalent.
 - (a) $(NH_4)_2S$

(e) N_2O_3

(b) OCl₂

(f) SCl₂

(c) SnCl₂

(g) NBr₃

(d) NaNO₃

- (h) FeF₂
- 2. The compounds in each group below have similar-looking formulas. However, they may have very different names. Some in each group are ionic, while others are covalent. Classify and name each compound.
 - (a) VO₂

 $(d) SO_3$

NO₂

Li₂SO₃

(b) CrBr₂

Li₂SO₄ SO₂

CdBr₂ SBr₂

(e) OCl₂

(c) Na₂Cr₂O₇

BeF₂

Na₂CrO₄

 FeF_2

 Cr_2O_3

(f) CO₂

 N_2O_3

NaHCO₃

HOMEWORK

• Workbook Questions.....

68-71, 73