| 4.1 Atomic Theory and Bonding | |--| | An is the smallest particle of an element that still has the properties of that | | element | | 50 million atoms, lined up end to end = 1 cm | | ◆ An atom = + + | | Atoms join together to form | | A compound is a pure substance that is composed of two or more atoms
combined in a specific way. | | Oxygen and hydrogen are atoms/elements; is a compound. | | A chemical change occurs when the arrangement of atoms in compounds
changes to form new compounds. | | Atomic Theory | | Atoms are made up of smaller particles called | | Theis at the centre of an atom. | | The nucleus is composed of and | | • exist in the space surrounding the nucleus. | | # of protons = # of electrons in every atom | | Nuclear charge = charge on the nucleus = # of protons | | • = # of protons = # of electrons | | Organization of the Periodic Table | | In the periodic table elements are listed in order by | | their atomic number. | | are on the left (the transition metals range from group 3 to group | | 12), non-metals are on the right, and the metalloids form a "staircase" toward | | the right side. | | Rows of elements (across) are called | | All elements in a period have their electrons in the same general area | | around their nucleus. | | Columns of elements are called or | | All elements in a family have similar properties and bond with other | | elements in similar ways. | | ■ Group 1 = | | ■ Group 2 = | | ■ Group 17 = | | ■ Group 18 = | #### The Periodic Table - Periodic Table and Ion Formation - Atoms and electrons to form bonds. - The atoms become electrically charged particles called ______. - lose electrons and become positive ions (cations). - Some metals (multivalent) lose electrons in different ways. - For example, iron, Fe, loses either two (Fe²⁺) or three (Fe³⁺) electrons - _____ gain electrons and become negative ions (anions). - Atoms gain and lose electrons in an attempt to have the ______ of valence electrons (electrons farthest from the nucleus) as the nearest noble gas in the periodic table. ### **Bohr Diagrams** - Bohr diagrams show how many electrons appear in each electron shell around an atom. - Electrons in the outermost shell are called _______ - Think of the shells as being 3-D like spheres, not 2-D like circles. ## **Patterns of Electron Arrangement in Periods and Groups** - Electrons appear in shells in a very predictable manner. - There is a maximum of _____ electrons in the first shell, _____ in the 2nd shell, and ____ in the 3rd shell. - The period number = the number of shells in the atom. - Except for the transition elements, the last digit of the group number = the number of electrons in the valence shell. #### **Forming Compounds** - When two atoms get close together, their valence electrons . - If the valence electrons can combine to form a low-energy bond, a _______ is formed. - Each atom in the compound attempts to have the _____ number of valence electrons as the nearest noble gas. - Metals may lose electrons and non-metals may gain electrons (ionic bond), or atoms may share electrons (covalent bond). - ______ bonds form when electrons are transferred from positive ions to negative ions. - bonds form when electrons are shared between two non-metals. - Electrons stay with their atom but overlap with other shells. - Ionic bonds are formed between positive ions and negative ions. - Generally, this is a _____ (+) and a ____ (-) ion. - ◆ For example, lithium and oxygen form an ionic bond in the compound Li₂O. - bonds are formed between two or more non-metals. - Electrons are shared between atoms. # **Lewis Diagrams** - Lewis diagrams illustrate chemical bonding by showing only an atom's valence electrons and the chemical symbol. - _____representing electrons are placed around the element symbols at the points of the compass (north, east, south, and west). - Electron dots are placed singly until the fifth electron is reached then they are paired. | Lewis Diagrams of Ion | |-----------------------| |-----------------------| | • | Lewis diagrams can be used to represent | | | | | | | | |---|---|--|--|--|--|--|--|--| | | • | For positive ions, one electron dot is removed from the valence shell for each | | | | | | | | | | positive charge. | | | | | | | | * | For negative ions, | one electron | dot is added t | to each valei | nce shell for | each | |----------|--------------------|--------------|----------------|---------------|---------------|------| | | negative charge. | | | | | | | • | | are | placed | around | each | ion ⁻ | to ir | ndicate | transfer | of | electron | s. | |----------|--|-----|--------|--------|------|------------------|-------|---------|----------|----|----------|----| |----------|--|-----|--------|--------|------|------------------|-------|---------|----------|----|----------|----| # **Lewis Diagrams of Covalent Bonds** - Lewis diagrams can also represent covalent bonds. - Like Bohr diagrams, valence electrons are drawn to show sharing of electrons. - The shared pairs of electrons are usually drawn as a ______. Colour code periodic table. See page 172 **Bonding Assignment** Pg 60-63 in workbook