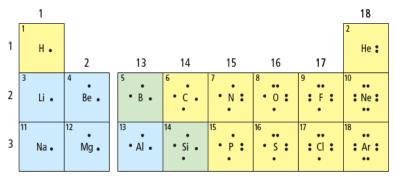

4.1 Atomic Theory and Bonding
An is the smallest particle of an element that still has the properties of that
element
50 million atoms, lined up end to end = 1 cm
◆ An atom = + +
 Atoms join together to form
 A compound is a pure substance that is composed of two or more atoms combined in a specific way.
 Oxygen and hydrogen are atoms/elements; is a compound.
 A chemical change occurs when the arrangement of atoms in compounds changes to form new compounds.
Atomic Theory
Atoms are made up of smaller particles called
Theis at the centre of an atom.
 The nucleus is composed of and
• exist in the space surrounding the nucleus.
of protons = # of electrons in every atom
 Nuclear charge = charge on the nucleus = # of protons
• = # of protons = # of electrons
Organization of the Periodic Table
In the periodic table elements are listed in order by
their atomic number.
 are on the left (the transition metals range from group 3 to group
12), non-metals are on the right, and the metalloids form a "staircase" toward
the right side.
 Rows of elements (across) are called
 All elements in a period have their electrons in the same general area
around their nucleus.
 Columns of elements are called or
 All elements in a family have similar properties and bond with other
elements in similar ways.
■ Group 1 =
■ Group 2 =
■ Group 17 =
■ Group 18 =

The Periodic Table

- Periodic Table and Ion Formation
- Atoms and electrons to form bonds.
 - The atoms become electrically charged particles called ______.
 - lose electrons and become positive ions (cations).
 - Some metals (multivalent) lose electrons in different ways.
 - For example, iron, Fe, loses either two (Fe²⁺) or three (Fe³⁺) electrons
 - _____ gain electrons and become negative ions (anions).
 - Atoms gain and lose electrons in an attempt to have the ______ of valence electrons (electrons farthest from the nucleus) as the nearest noble gas in the periodic table.

Bohr Diagrams

- Bohr diagrams show how many electrons appear in each electron shell around an atom.
 - Electrons in the outermost shell are called _______
 - Think of the shells as being 3-D like spheres, not 2-D like circles.


Patterns of Electron Arrangement in Periods and Groups

- Electrons appear in shells in a very predictable manner.
- There is a maximum of _____ electrons in the first shell, _____ in the 2nd shell, and ____ in the 3rd shell.
 - The period number = the number of shells in the atom.
 - Except for the transition elements, the last digit of the group number = the number of electrons in the valence shell.

Forming Compounds

- When two atoms get close together, their valence electrons .
 - If the valence electrons can combine to form a low-energy bond, a _______
 is formed.
 - Each atom in the compound attempts to have the _____ number of valence electrons as the nearest noble gas.
 - Metals may lose electrons and non-metals may gain electrons (ionic bond), or atoms may share electrons (covalent bond).
- ______ bonds form when electrons are transferred from positive ions to negative ions.
- bonds form when electrons are shared between two non-metals.
 - Electrons stay with their atom but overlap with other shells.
- Ionic bonds are formed between positive ions and negative ions.
 - Generally, this is a _____ (+) and a ____ (-) ion.
 - ◆ For example, lithium and oxygen form an ionic bond in the compound Li₂O.
 - bonds are formed between two or more non-metals.
 - Electrons are shared between atoms.

Lewis Diagrams

- Lewis diagrams illustrate chemical bonding by showing only an atom's valence electrons and the chemical symbol.
 - _____representing electrons are placed around the element symbols at the points of the compass (north, east, south, and west).
 - Electron dots are placed singly until the fifth electron is reached then they are paired.

Lewis Diagrams of Ion

•	Lewis diagrams can be used to represent							
	•	For positive ions, one electron dot is removed from the valence shell for each						
		positive charge.						

*	For negative ions,	one electron	dot is added t	to each valei	nce shell for	each
	negative charge.					

•		are	placed	around	each	ion ⁻	to ir	ndicate	transfer	of	electron	s.
----------	--	-----	--------	--------	------	------------------	-------	---------	----------	----	----------	----

Lewis Diagrams of Covalent Bonds

- Lewis diagrams can also represent covalent bonds.
 - Like Bohr diagrams, valence electrons are drawn to show sharing of electrons.
 - The shared pairs of electrons are usually drawn as a ______.

Colour code periodic table. See page 172

Bonding Assignment

Pg 60-63 in workbook