PHYLUM PORIFERA

Sponges

Simple Animals

SPONGES

- Simplest and most unusual animals
- Most ancient animals
 - Around 540 million years old
- Aquatic animals
 - Ocean and fresh water
- Variety of colours, shapes and sizes
- Porifera means "pore bearer"
- Sessile

WHY IS A SPONGE AN ANIMAL?

- Heterotrophic
- Multicellular
- No cell wall
- A few specialized cells

"PORE BEARERS"

 Sponges have tiny openings/pores all over their bodies

Asymmetrical

- Only two layers
 - Endoderm and ectoderm
- No body cavity
- Large cylindrical water pump
- Body forms around a wall around a large central cavity in which water is continually circulated
- Movement of water through a sponge provides a simple mechanism for feeding, respiration, circulation and excretion

BODY PLAN

STRUCTURE AND FUNCTION

- Water enters through pores located in the body wall
- Leaves through the osculum
 - a large hole at the top of the sponge.
- Function
 - Expels water and wastes

Choanocytes

Specialized cells with flagella

Function:

 use flagella to move a steady current of water through the sponge.

- Harder sponges
 - Made of spiny spicules
 - **spicule** is a spike-shaped structure made of calcium carbonate or silica.
- Spicules are made by archaeocytes
 - specialized cells that move around within the walls of the sponge

SKELETON

Spicule

- Softer sponges
 - Internal skeleton made of spongin
 - Network of flexible protein fibers
- These softer sponges are harvested and used as natural bath sponges

FEEDING

- Feeding
 - No mouth or gut
 - Sponges are filter feeders.
 - Intracellular digestion
 - As water moves through the sponge, food particles are trapped and engulfed by choanocytes
 - Particles are then passed on to archaeocytes (amoebocytes)
- Rely on movement of water
 - Complete the digestive process and transport digested food throughout the sponge

RESPIRATION, CIRCULATION & EXCRETION

- As water moves through the body oxygen from the water diffuses into the surrounding cells
- Carbon dioxide and wastes(ammonia) diffuse into the water and are carried away

RESPONSE

- Do not have a nervous system
- Produce toxins to prevent potential predators

REPRODUCTION

- Reproduce both sexually and asexually
- A single sponge can produce both sperm and egg
- Eggs are fertilized inside a sponges body
 - Internal fertilization
- Sperm are released from one sponge
 - Carried by water currents to pores of another sponge
 - Archaeocytes carry sperm to egg
 - · Zygote forms, develops into larva
 - Larva is an immature stage of an organism that looks different from its adult form
 - Larva are motile, carried by currents to a new location

ASEXUAL REPRODUCTION

- Budding
 - Part of a sponge breaks off of parent
 - Settles to the sea floor and grows into a new sponge
- Gemmule production
 - Occurs when harsh environmental conditions exist
 - Gemmules are groups of archeocytes surrounded by a tough layer of spicules
- When conditions become favourable
 - Gemmule grows into new sponge

ECOLOGY OF SPONGES

- Sponges are important in aquatic ecology.
- They provide habitats for marine animals
 - snails, sea stars, and shrimp
- Symbiotic relationships
 - Commensalism
 - Habitats
 - Mutualism
 - Partnerships with photosynthetic bacteria, algae, protists
 - Photosynthetic organisms provide food/oxygen
 - Sponges proved protected area

https://www.youtube.com/watch?v=m8a0oNsDEx8