The Immune System

- ▶ The body's main defense against pathogens
- It recognizes, attacks, destroys and remembers each type of pathogen that enters the body
- For each type of pathogen, the immune system produces cells specific to that pathogen
- The immune system functions to fight infections through the productions of cells providing immunity.

Two General Categories

- Non specific defenses
 - Keeps pathogens out of the body
 - ▶ Like fortress wall of the system
 - Guard by keeping most things out
 - Response is the same for any type of invader
- Specific defenses
 - Security guard
 - ▶ Track down and destroy harmful pathogens that have made it past the non specific defenses.

Nonspecific Defenses

- ► First line of defense
 - Physical and Chemical barriers
 - The skin is a physical barrier that stops most pathogens from entering the body (MOST IMPORTANT)
 - Once the skin is broken pathogens can enter the body and quickly multiply.
 - ► MHAŠŠŠ

First line of Defense

- Mucus and Saliva contain enzymes that can kill bacteria by breaking down their cell wall
- The sweat and oils on skin are slightly acidic.
- Gastric juices in your stomach can destroy some pathogens.
- Mucus and cilia in your nose prevent pathogens from entering your respiratory system.

Second line of Defense

If a pathogen makes it past the first line of defense.

- The second line of defense includes two types of immune response:
 - ▶ Innate Immune Response
 - A response you are born with.
 - Acquired Immune Response
 - ► A highly specific attack on a pathogen.

Non specific defenses -Innate

- If pathogens enter body 2nd line of defense is activated
 - ▶ Inflammatory Response
 - ▶ Reaction to tissue damage caused by injury or infection
 - ▶ Immune system produces millions of white blood cells(WBC) to fight the infection
 - Blood vessels near wound expand allowing White Blood Cells to move from the vessels into the infected tissue causing flow of fluid into the area
 - ▶ Infected tissue may become swollen, red and painful
 - ► <u>Many of these WBC are phagocytes which engulf and destroy</u> bacteria

Inflammatory Response

- Immune response also releases chemicals that increase body temperature
 - ▶ Fever
 - Kills many pathogens as many can only survive in a narrow temperature
 - ▶ An elevated temperature also increases the heart rate which allows the WBC to travel to the site of infection faster
- Fever and elevated numbers of white blood cells indicate to doctors that your body is working hard to fight an infection.

Specific Defenses-Acquired Immune Response

Highly specific attack on a specific pathogen or antigen.

Bacterium

- ► Also known as the Immune Response
 - Triggered by an antigen
 - ► An antigen is a non-living particle or substance that body cannot recognize.
 - Virus, bacteria or other pathogen may serve as an antigen

Specific Defenses-Acquired Immune Response

Cells of the immune system that recognize specific antigens are two types of Lymphocytes (WBC)

- ▶ B-cells
- ▶ T-cells

Types of Immunity

- B-Cells provide immunity against antigens/pathogens in the BODY FLUIDS (outside the cell)
 - Called Humoral Immunity
- ► T-Cells provide a defense against abnormal cells and pathogens that manage to enter the cell
 - Called Cell Mediated Immunity

Acquired Immune Response-Humoral Response

B cells in action

- First process in the acquired immune response:
 - Occurs in the body fluids or "humours" outside the cell
 - ▶ B Cells recognize antigens present in the body and start to rapidly grow and divide.
 - ▶ B Cells produce particles, called antibodies
 - Antibodies are proteins that recognize and bind to the antigen
 - Antibodies attach to and mark or destroy pathogens and antigens

Immunity

- ▶ Once the body has been exposed to a pathogen, millions of Memory B cells remain capable of producing antibodies specific to that pathogen
 - ► This happens much quicker than the first exposure to the pathogen
 - Greatly decreases your chance of developing that disease a second time.

Antibodies

- Small differences in amino acids affect shapes of binding sites.
- Different shapes allow antibodies to recognize a variety of antigens with complementary shapes

Acquired Immune Response- Cell

Mediated

- Second process in the acquired immune response:
- Occurs if the pathogen is able to <u>get</u> <u>inside</u> living cells
 - Antibodies alone cannot destroy them
- Two types of T cells:
 - ▶ Helper T cells
 - Recognize antigen or pathogen and activate B cells
 - Produce Memory T Cells
 - ► Killer T cells
 - ▶ Track down and destroy bacteria, fungi, protists or foreign tissue that contain the antigen

Two killer T cells (yellowish in colour) attack a cancer cell.

Macrophage

T cell, activated by macrophage, becomes a helper T cell.

Helper T cell

Helper T cell activates killer T cells and B cells.

Result

- All acquired immune responses help give you active immunity.
 - This means your body remembers how to fight a pathogen that has infected it before.
 - After an infection antibodies get stored on B cells (Memory B Cells)
 - These can reactivate if the antigen/pathogen reappears
 - This is why you get diseases such as chicken pox only once.

Immune Response (4 Steps)

- The response of your immune system to disease-causing organisms can be divided into four steps:
- 1. Recognition
- 2. Mobilization
- 3. Disposal
- 4. Immunity

Jenners Famous Experiment

- https://www.youtube.com/watch?v=yqUFy-t4MIQ
- Would his experiment happen today?
 - ▶ Is it ethical?

(c) McGraw Hill Ryerson 2007

Active Immunity

- The body makes its own antibodies in response to an antigen.
- Results from:
 - Natural exposure to the antigen
 - Fighting an infection
 - Deliberate exposure to the antigen
 - ▶ Vaccination
- Vaccines
 - The injection of a weakened form of a pathogen to produce immunity
 - Stimulate the immune system to create millions of cells ready to produce specific types of antibodies
- Boosters are needed for some vaccines to extend the immune system's memory (tetanus)

Traveling to another Country

Why do you have to check with your doctor about vaccinations before travelling to another country?

Passive Immunity

- Antibodies produced by other animals against a pathogen are injected into the bloodstream
 - Does not last very long as the body will destroy the foreign antibodies
 - Can develop naturally or by deliberate exposure

- Antibodies produced by a mother are passes to the infant via breastmilk
 - Will protect a child against most infectious diseases for the first few months or longer if breast fed
- Deliberate Exposure
 - Individuals bitten by rabid animals are injected with antibodies that attack the rabies virus

Herd Immunity: How It Works

Herd Immunity

Herd immunity is a form of immunity that occurs when the vaccination of a significant portion of a population (or herd) provides a measure of protection for individuals who have not developed immunity.

Vaccine Wars

► Should we be vaccinating our children?

What happens when your immune system works against you????

Allergies > life threatening diseases

Disorders of the Immune System

Dust Mite

► Allergies

- ► An allergy is an unusually high sensitivity to some substance.
- Any antigen that causes an allergic reaction is called an allergen.
 - Common allergens are: milk, pollen, and dust.
 - Allergens act as an antigen

Histamines

- Body releases chemical called histamine to fight allergen.
 - Common symptoms includes sneezing, runny nose and watery eyes.
- Increase the flow of blood and fluids to the surrounding area
- Antihistamines are drugs that are used to counteract the effects of histamines

What happens when you are highly allergic?

- Severe allergies can cause an anaphylactic shock.
 - ▶ le peanuts, bee stings
- People with severe allergies can experience
 - Swelling of airways
 - Breathing difficulty
 - Death

- Most likely will carry an "epi-pen"
 - Injected into thigh
 - Adrenaline autoinjector
 - ▶ Will decrease effects of allergic reaction

Autoimmune Disease

- When the immune system makes a mistake and attacks the body's own cells
 - ▶ Type I Diabetes
 - Rheumatoid arthritis
 - ► Multiple Sclerosis

Disorders of the Immune System

AIDS – Acquired Immunodeficiency Syndrome

- AIDS is caused by a virus called HIV
- ► HIV attacks the immune system by infecting Helper T Cells.
 - When other pathogens or antigens enter the body the immune system can't activate Killer T cells or B cells.
 - ► This can lead to a person dying from a less serious infection.

Illustration of HIV

Transmission

- AIDS is transmitted by blood and semen.
 - ▶ Through unsafe sex or sharing needles
 - ▶ NOT through casual contact

- Currently no cure
 - ► The virus keeps changing its structure making the antigen hard to identify
 - New forms are identified every year
 - An infected person typically live 4-10 years

Taking Care of Your Immune System

Important steps you can take to help your immune system stay healthy.

- · Eat a well-balanced diet.
- Maintain your personal hygiene—brush your teeth, shower or bathe, and wash your hands often.
- Keep your home clean.
- Avoid tobacco and other non-prescription drugs.
- · Get plenty of rest and exercise.
- Keep your vaccinations up to date.
- Do not engage in activities that involve sharing body fluids with others.

