New 3 Domain System

O Reflects greater understanding of evolution and molecular evidence

• Three Domain System:

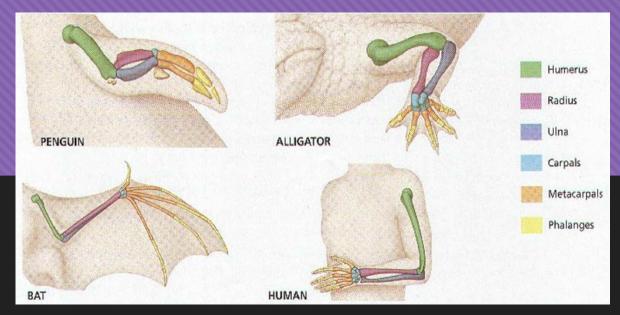
O Molecular Analysis gave scientists new information

OAll organisms placed into three broad groups called domains

O Domain Archaea (kingdom Archaebacteria) contains chemosynthetic bacteria living in harsh environments

O Domain Bacteria (kingdom Eubacteria) contains all other bacteria including those causing disease

O Domain Eukarya (kingdoms Protista, Fungi, Plantae, & Animalia) contains all eukaryotic organisms

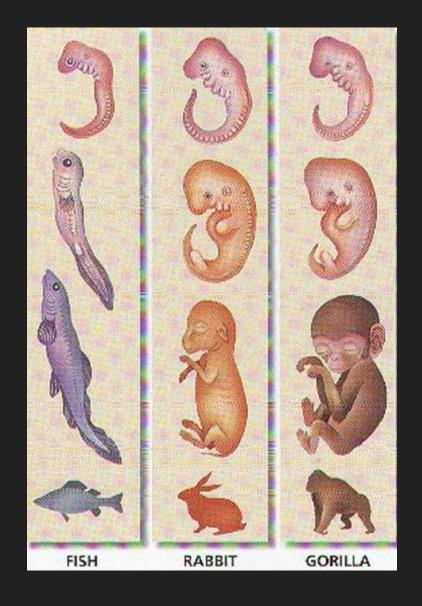

Classification of Living Things								
DOMAIN	Bacteria	Archaea	Eukarya					
KINGDOM	Eubacteria	Archaebacteria	Protista	Fungi	Plantae	Animalia		
CELL TYPE	Prokaryote	Prokaryote	Eukaryote	Eukaryote	Eukaryote	Eukaryote		
CELL STRUCTURES	Cell walls with peptidoglycan	Cell walls without peptidoglycan	Cell walls of cellulose in some; some have chloroplasts	Cell walls of chitin	Cell walls of cellulose; chloroplasts	No cell walls or chloroplasts		
NUMBER OF CELLS	Unicellular	Unicellular	Most unicellular; some colonial; some multicellular	Most multicellular; some unicellular	Multicellular	Multicellular		
MODE OF NUTRITION	Autotroph or heterotroph	Autotroph or heterotroph	Autotroph or heterotroph	Heterotroph	Autotroph	Heterotroph		
EXAMPLES	Streptococcus, Escherichia coli	Methanogens, halophiles	<i>Amoeba, Paramecium,</i> slime molds, giant kelp	Mushrooms, yeasts	Mosses, ferns, flowering plants	Sponges, worms, insects, fishes, mammals		

Time out

O18-2/18-3 Textbook Questions

Modern Taxonomy

O Modern taxonomists classify

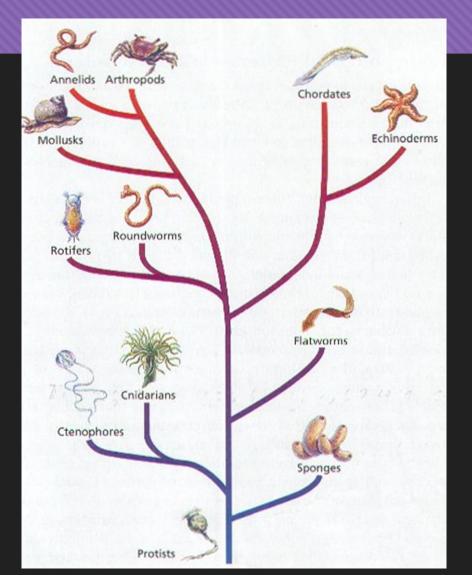


- organisms based on their evolutionary relationships
- O Homologous structures have the same structure, but different functions & show common ancestry
- The bones in a bat's wing, human's arm, penguin's flipper are the same (homologous), but the function is different

• Analogous structures have the same function, but different structures & do not show a close relationship (insect wing & bird's wing)

OSimilarity in embryo development shows a close relationship (vertebrate embryos all have tail & gill slits)

OSimilarity in DNA & amino acid sequences of proteins show related organisms


Phylogeny(evolutionary history)

• Phylogenetic trees are branching diagrams showing how organisms are related

O Also called family trees

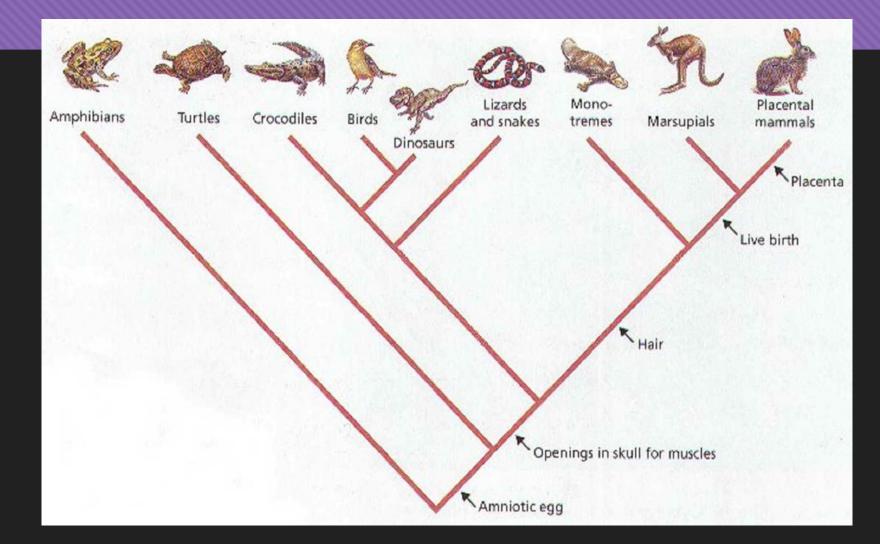
• Fossil records help establish relationships on a phylogenetic tree

Organizes living things based on their evolution

OCommon ancestor is shown at the base of the tree
OMost modern organisms shown at tips of branches
OEach time a branch divides

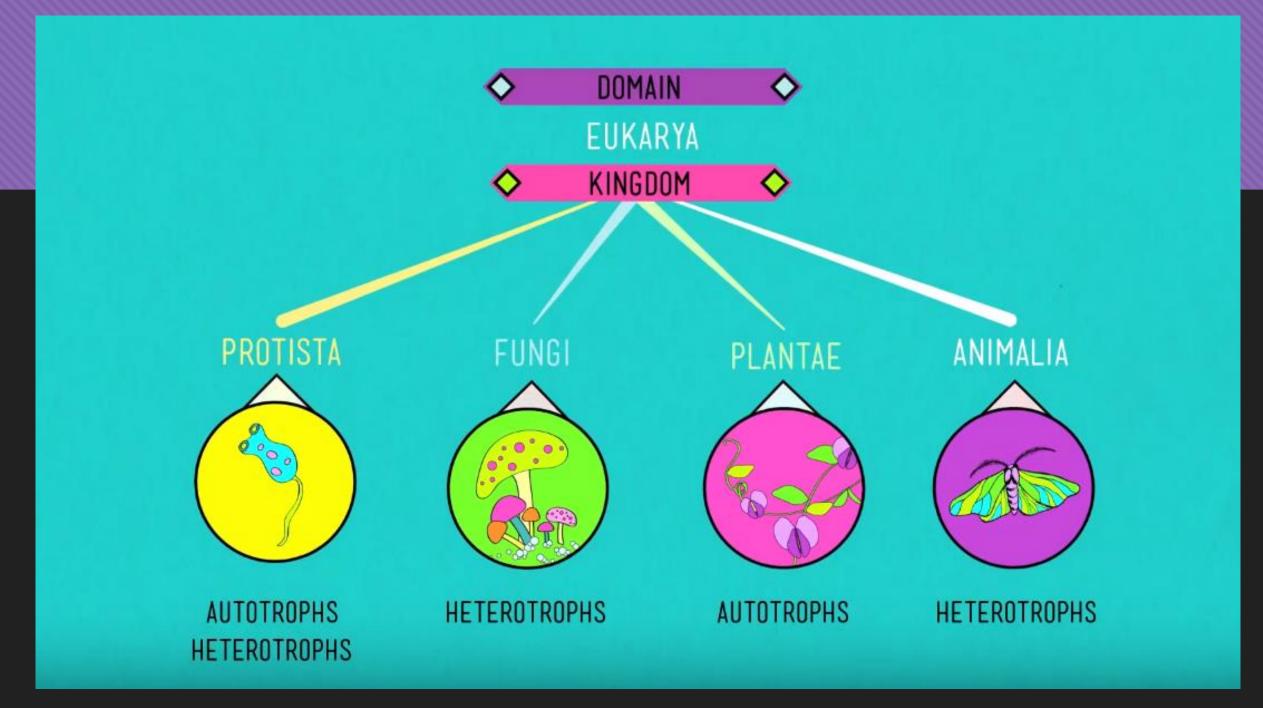
species evolves

into a smaller branch, a new


Mollusk Roundworms Rotifers Flatworms Cnidarians Ctenophores

Chordate

nnelids Arthropod


Cladograms

OCladograms shows how organisms are related based on shared, derived characteristics such as feathers, hair, scales, etc.

Classification On How Organism obtain energy

		Autotroph (i made dis.)
Autotrophs	Heterotrophs	
Make their own food from inorganic molecules (CO2)	Obtain energy by consuming organic molecules (sugars etc. made by other organisms	
Ex-Photosynthesis in Producers (Plants)	Ex- Consumers (Animals)	Heterotroph
		@AmoebaSisters

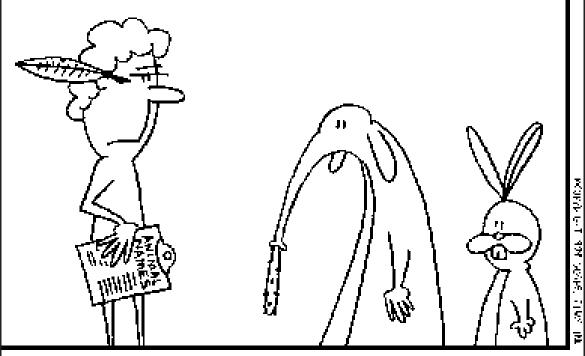


TABLE 18-2 Six Kingdoms of Life

Kingdom	Cell type	Number of cells	Nutrition
Archaebacteria	prokaryotic	unicellular	autotrophy and heterotrophy
Eubacteria	prokaryotic	unicellular	autotrophy and heterotrophy
Protista	eukaryotic	unicellular and multicellular	autotrophy and heterotrophy
Fungi	eukaryotic	unicellular and multicellular	heterotrophy
Plantae	eukaryotic	multicellular	autotrophy and (rarely) heterotrophy
Animalia	eukaryotic	multicellular	heterotrophy

Time out

OComplete your Domain and Kingdom Chart OUse Notes and Textbooks

AFTER JUST STRUGGLING TO PICK NAMES FOR THE PLATYPUS, THE AUK, THE RHINOCEROS AND THE GIBBON, ADAM WAS NOT IN THE MOOD TO WASTE MUCH TIME ON THIS 'EATER OF ANTS'