Periodic Trends: Continued

Elements in chemical groups have similar electron arrangements

- Atoms in the same group have the same number of ______ electrons
 - o Group _____: One valence electron
 - o Group _____: Two valence electrons
 - o Groups ______: 3, 4, 5, 6, 7, 8 valence electrons
 - Exception: _____ has 2 valence electrons (other noble gases have 8 valence electrons)

Atoms in the same period have the same number of occupied energy shells

- First period (hydrogen and helium): _____ occupied energy shell
- Second period: _____ occupied energy shells
- Third period: _____ occupied energy shells

Noble Gas Stability: A Full Valence Shell

- During a chemical reaction, atoms ______ valence electrons with other atoms
- Noble gases are stable (unreactive) because they have _____valence shells
- Their atoms do ______ tend to gain, lose, or share electrons

How Other Elements Achieve Full Valence Shells

- Other elements can achieve a full valence shell by gaining or losing ______ during a chemical reaction
- When a neutral atom gains or loses an electron, it becomes an
 - o _____ an electron: becomes positively charged ion
 - _____an electron: becomes a negatively charged ion

Reactivity of an element is linked to how close it is to having a full valence shell

 Most reactive elements: Groups ____ and ____ (elements are only one electron away from a full valence shell)

Example: Sodium (group 1) easily _____ an electron

Example: Fluorine (group 17) readily _____ an electron to complete their valence shell

Discussion Questions

- 1. Explain why metals tend to lose electrons and non-metals tend to gain them.
- 2. Draw a chlorine atom/chloride ion
- 3. Draw a potassium atom/ion

Hemin	gway		Name:					
4.	Draw an argon atom							
5.	Use diagrams to compar and an argon atom.	e the electron arrang	ements of a chloride ion, a potassium ion,					
	e Out plete pages 74-75 i	n workbook						
The p	periodic table shows h	ow properties of	elements change in predictable					
ways								
Period	dic trend:							
•	A regular variation in the		of elements based on their atomic structure					
•	Periodic table can analyz	e these trends becau	se it can help you compare					
	in groups and periods							
Atom	nic Size Trends: Atomi	c Size Increases M	oving Down a Group					
•	Atomic size	moving dow	n a group					
•	• As you move down a group, elements have atoms with increasing numbers of energy							
•	The greater the number	of shells, the	the valence electrons are from the					
	nucleus, and the larger the atom							
Atom	nic Size Decreases Mo	ving Left to Right A	Across a Period					
•	Atomic size	moving left to	right across a period					
•	Elements have increasing							

 Number of occupied valence shells stay the same, but the number of protons in the nucleus

How does this result in decreasing atomic size across a period?

Attraction between valence
electrons and the nucleus
_____ because a
greater positive charge on the
nucleus pulls more strongly on
the electrons

Therefore, the electrons are pulled more ______ towards the nucleus, leading to decreasing atomic size

Metal Reactivity and Atom Size

			-			
•	(-iroun 1	motalc.	Potaccilim	is more	reactive than	า รถสมมาก

- Both have one valence electron
- Potassium atom is than sodium
- Potassium atom's valence electron is away from the nucleus
- Pull of the positive charge on the nucleus is __________
- Valence electron is ______to remove (less energy is needed to remove the electron)

Discussion Questions

- 1. Explain why atoms get larger down a group on the periodic table.
- 2. Explain why atoms get smaller from left to right across a period on the periodic table.

- 3. Explain why an alkali metal is more reactive than an alkaline-earth metal in the same period.
- 4. Explain why larger atoms are more reactive than smaller atoms

Time Out

Pages 76-80 in workbook

