How Do We Name and Write Formulas for Compounds? # Activity • Names in Everyday life | • Bin | de up ofof one metal element and ions of one non-metal element; joined by bonds ary in chemistry means "composed of elements ary lonic Compounds e name of a binary ionic compound comes from the name of its Example: potassium iodide | |--------------------------------|---| | of Bin | ary Ionic Compounds e name of a binary ionic compound comes from the name of its Example: potassium iodide | | • The | e name of a binary ionic compound comes from the name of its Example: potassium iodide | | | Example: potassium iodide | | Write o | | | Write o | lanna dha alamanda bashda dha anna anna | | | lown the elements inside the compound | | The fire | et part names the ion, potassium (K ⁺) | | • | In a binary ionic compound, the positive ion is always a metal and youchange the name | | The sec | cond part names the ion, iodide (I ⁻) | | • | In a binary ionic compound, the negative ion is always a non-metal | | • | Replace the ending of the non metal and add the suffix | | • | The negative ion of iodine is iodide | | he Follo | wing | | Ca ₃ N ₂ | | | • | calcium and nitrogen | | NaCl | • K ₂ O • Li ₃ N | | | The sec
•
•
he Follo
Ca ₃ N ₂ | ### Time out • Naming binary ionic compounds worksheet • What is the difference between the name of a non-metal element and the name of the negative ion it forms? ### **Activity** ### **Ion Ratios** You can determine the formula of an ionic compound from its name. Formulas for binary ionic compounds: Positive ion (metal) ______, negative ion (non-metal) ______ indicate the ratio of each type of ion in the compound (no subscript: assume the number is 1) Chemical formula represents the smallest (______) repeating part of the crystal ### **Examples of Chemical Formulas of Binary Ionic Compounds** ### **Writing Formulas of Ionic Compounds** lattice (formula unit) Although an ionic compound is made up of ions, the compound's overall charge is_____ (it is electrically neutral) - Positive charges on the metal ions must ______ the negative charges on the non-metal ions - Example: Aluminum oxide has two aluminum ions, Al³⁺, and three oxide ions, O²⁻. What is the total charge? | Charge from Al ³⁺ ions | Charge from Cl⁻ ions | | |--|---|--| | There are 2 aluminum ions in the formula, each with a charge of 3+. $2 \times (3+) = 6+$ | There are 3 oxide ions in the formula, each with a charge of 2–. $3 \times (2-) = 6-$ | | | Total charge: (| 6+)+(6-)=0 | | - When writing the formula of a binary ionic compound, you first need to determine the on the ion. - For non-metals: Look at the periodic table - For metals: Look at the periodic table. - Some metals can form more than_____ion (each ion has a different charge). - What is the ion charge related to? ### Sample Problem: Writing the Formulas of Ionic Compounds (Step 1) #### Problem: What is the chemical formula for calcium chloride? ### Step 1: Identify each ion and its charge - Look at the periodic table to find the ion charge - Calcium is a Group 2 metal, so its ion charge is ______ - Chlorine is a Group 17 metal, so its ion charge is ### Step 2: Determine the number of ions needed to balance positive charges with negative charges. - A calcium ion (Ca²⁺) has a charge of 2+ - A chloride ion (Cl⁻) has a charge of 1- - Therefore, _____ chloride ions are needed to balance the positive charge of _____ calcium ion | Charge from Ca ²⁺ | Charge from Cl⁻ | |--|---| | A calcium ion has a charge of 2+. $1 \times (2+) = 2+$ | A chloride ion has a charge of 1—. Therefore, two chloride ions are needed to balance the charge of one calcium ion. 2 × (1—) = 2— | # Step 3: Use subscripts to write the formula (do not include a subscript if the subscript would be "1"). Remember to write the metal ion first. • Recall: Two chloride ions are needed to balance the positive charge of one calcium ion | Hemingway | Na Na | me: | |-----------|-------|-----| | | | | Therefore, the formula for calcium chloride is ______ ### **Discussion Questions** - 1. What is the formula for aluminum sulphide? Show how you got there - 2. Even though ionic compounds are made up of charged particles, they are electrically neutral. Why is this? ### Time out • Pg 94-95 in workbook ### Multivalent metals form more than one ion **Multivalent metal**: a metal element that can form ______ types of ions with different charges **Example**: Copper can form ions with a _____or ___ charge - A _____ is written after the name of the metal to distinguish between the ions - Cu⁺: copper(I) - Cu²⁺: copper(II) Table 2.6 Roman Numerals | Metal Ion Charge | Roman Numeral | |------------------|---------------| | 1+ | I | | 2+ | П | | 3+ | III | | 4+ | IV | | 5+ | V | | 6+ | VI | | 7+ | VII | # Writing Formulas for Ionic Compounds Containing Multivalent Metals To write the chemical formula of a compound with a multivalent metal, follow the same process as for binary ionic compounds. - Difference: You cannot tell the charge on the metal ion by looking at the periodic table, since there will be multiple charges listed - Look at the in the name, which will tell you the charge - Example: chromium(III) chloride tells you that the chromium ion is ______ # Sample Problem: Writing Formulas for Ionic Compounds Containing Multivalent Metals (Step 1) Problem: What is the chemical formula for chromium(III) chloride? Step 1: Identify each ion and its charge. - Look at the periodic table to find the ion charge - Chromium is a multivalent metal (ion charge can be 3+ or 2+). Its ion charge is 3+ since its name contains the Roman numeral "III": Cr³⁺ - Chlorine is a Group 17 metal, so its ion charge is 1-: Cl⁻ Step 2: Determine the number of ions needed to ______ positive charges with negative charges. - A chromium ion (Cr³⁺) has a charge of _____ - A chloride ion (Cl⁻) has a charge of _____ - Therefore, _____ chloride ions are needed to balance the positive charge of chromium ion Step 3: Use subscripts to write the formula (do not include a subscript if the subscript would be "1"). Remember to write the metal ion first. - Recall: Three chloride ions are needed to balance the positive charge of one chromium ion - Therefore, the formula for chromium(III) chloride is ______ ### **Practice** Workbook Pg 96 #2 only ### **Naming Compounds with Multivalent metals** - The same naming rules apply as in other binary ionic compounds - In addition, in the name of the compound, Roman numerals are used following the positive ion to indicate ______ was used - To determine which ion was used - Look at the ______ ion, determine what charge is coming from that side | Hemingway | Name: | |-----------|-------| | | | - The negative ion is used because there is only____ charge - Ex: TiF₄ Titanium has multiple charges Fluorine is -1, if there is 4 $$4 \times -1 = -4$$ Therefore, in order for the overall charge of the compound to be 0, _____ must be coming from titanium. Since there is only _____ Titanium, we know the charge used was +4 Therefore the name is _____ ### Naming an Ionic Compound with a Multivalent Metal (Step 1) Problem: What is the name of Fe₂O₃? ### Step 1: Identify each ion and its charge - Look at the periodic table to find the ion charge - Iron is a multivalent metal (ion charge can be 2+ or 3+): Fe²⁺ or Fe³⁺ - Oxygen's ion charge is 2-: O²⁻ ### Step 2: Determine the ratio of ions in the compound. According to the formula, the compound has 2 iron (Fe) ions for every 3 oxide (O) ions Step 3: The negative charges and the positive charges must be equal in magnitude for the compound to be electrically neutral. Which of the two possible iron ions achieves this balance? - Recall: - Iron is a multivalent metal (ion charge can be 2+ or 3+): Fe²⁺ or Fe³⁺ - Oxygen's ion charge is 2-: O²⁻ - Since there are __oxide ions, there is an overall negative charge of ____[calculation: 3 x (2-) = 6-] - Since there are ____ iron ions, they must each have a charge of 3+ to give an overall positive charge of 6+ [calculation: 2 x (3+) = 6+] - Therefore the iron ion in this compound is Fe³⁺ Step 4: Write the name of the compound using a Roman numeral to indicate the charge of the metal ion. Recall: The iron ion in this compound is Fe³⁺ Therefore, the name of Fe₂O₃ is ______ ### **Discussion Questions** - 1. Explain why copper is able to form two different compounds with oxygen. - 2. Why are Roman numerals included in the names of multivalent metal ions? ### **Time Out** Complete # 1 and #3 on pg 96 in the workbook. ### Polyatomic ions are made up of more than one atom **Polyatomic ion**: an ion made up of _____covalently bonded atoms - Example: carbonate ion (CO₃²-) - ___carbon atom - ____ oxygen atoms - There are a limited number of polyatomic ions that regularly occur in compounds ### **Common Polyatomic ions** Table 2.7 Names, formulas, and charges of some common polyatomic ions | 1+ Charge | 1— Charge | 2- Charge | 3— Charge | |-----------------------------|--|---|--| | ammonium, NH ₄ + | acetate, CH ₃ COO ⁻ chlorate, ClO ₃ ⁻ chlorite, ClO ₂ ⁻ hydrogen carbonate, HCO ₃ ⁻ hydroxide, OH ⁻ nitrate, NO ₃ ⁻ nitrite, NO ₂ ⁻ permanganate, MnO ₄ ⁻ | carbonate, CO ₃ ²⁻ chromate, CrO ₄ ²⁻ dichromate, Cr ₂ O ₇ ²⁻ peroxide, O ₂ ²⁻ sulfate, SO ₄ ²⁻ sulfite, SO ₃ ²⁻ | phosphate, PO ₄ 3-
phosphite, PO ₃ 3- | ### Naming ionic compounds containing Polyatomic ions - Follows the same rules as binary ionic compounds - Exception: you change the name of the polyatomic - If the polyatomic is positive it will be written first and the non metal ion will change its suffix to "ide" | Hemingway Name: | |--| | • Example: NH ₄ Cl | | If the polyatomic is negative the metal ion will not change its name, since you do not change the polyatomic it also does not change. Example: NaNO₃ | | Writing Chemical Formulas of a Compound with a Polyatomic Ion (Step 1) | | Problem: | | What is the chemical formula for calcium nitrate? | | Step 1: Identify each ion and its charge. Use Table 2.7 to find the formula of the polyatomic ion. | | Look at the periodic table to find the ion charge of calcium. Use Table 2.7 to find the formula
and charge of nitrate. | | • Calcium is a Group 2 metal, so its ion charge is 2+: Ca ²⁺ | | • Nitrate: | | Step 2: Determine the number of ions needed to balance positive charges with negative charges. | | A calcium ion (Ca ²⁺) has a charge of | | • A nitrate ion (NO ₃ -) has a charge of | | Therefore, nitrate ions are needed to balance the positive charge of one calcium ion | | Step 3: Use subscripts to write the formula (do not include a subscript if the subscript would be "1"). | | If there is polyatomic ion needed, use parentheses to enclose the polyatomic ion before adding the subscript. | | Recall: Two nitrate ions are needed to balance the positive charge of one calcium ion | | Therefore, the formula for calcium nitrate is | | Discussion Questions | | 1. What is a polyatomic ion? | 2. How are parentheses used in writing formulas containing polyatomic ions? ## Time OUT • Complete page 97 in workbook