How Do We Name and Write Formulas for Compounds?

Activity

• Names in Everyday life

• Bin	de up ofof one metal element and ions of one non-metal element; joined by bonds ary in chemistry means "composed of elements ary lonic Compounds e name of a binary ionic compound comes from the name of its Example: potassium iodide
of Bin	ary Ionic Compounds e name of a binary ionic compound comes from the name of its Example: potassium iodide
• The	e name of a binary ionic compound comes from the name of its Example: potassium iodide
	Example: potassium iodide
Write o	
Write o	lanna dha alamanda bashda dha anna anna
	lown the elements inside the compound
The fire	et part names the ion, potassium (K ⁺)
•	In a binary ionic compound, the positive ion is always a metal and youchange the name
The sec	cond part names the ion, iodide (I ⁻)
•	In a binary ionic compound, the negative ion is always a non-metal
•	Replace the ending of the non metal and add the suffix
•	The negative ion of iodine is iodide
he Follo	wing
Ca ₃ N ₂	
•	calcium and nitrogen
NaCl	• K ₂ O • Li ₃ N
	The sec • • he Follo Ca ₃ N ₂

Time out

• Naming binary ionic compounds worksheet

• What is the difference between the name of a non-metal element and the name of the negative ion it forms?

Activity

Ion Ratios

You can determine the formula of an ionic compound from its name.
Formulas for binary ionic compounds:
Positive ion (metal) ______, negative ion (non-metal)
______ indicate the ratio of each type of ion in the compound (no subscript: assume the number is 1)
Chemical formula represents the smallest (______) repeating part of the crystal

Examples of Chemical Formulas of Binary Ionic Compounds

Writing Formulas of Ionic Compounds

lattice (formula unit)

Although an ionic compound is made up of ions, the compound's overall charge is_____ (it is electrically neutral)

- Positive charges on the metal ions must ______ the negative charges on the non-metal ions
- Example: Aluminum oxide has two aluminum ions, Al³⁺, and three oxide ions, O²⁻. What is the total charge?

Charge from Al ³⁺ ions	Charge from Cl⁻ ions	
There are 2 aluminum ions in the formula, each with a charge of 3+. $2 \times (3+) = 6+$	There are 3 oxide ions in the formula, each with a charge of 2–. $3 \times (2-) = 6-$	
Total charge: (6+)+(6-)=0	

- When writing the formula of a binary ionic compound, you first need to determine the on the ion.
 - For non-metals: Look at the periodic table
 - For metals: Look at the periodic table.
 - Some metals can form more than_____ion (each ion has a different charge).
- What is the ion charge related to?

Sample Problem: Writing the Formulas of Ionic Compounds (Step 1)

Problem:

What is the chemical formula for calcium chloride?

Step 1: Identify each ion and its charge

- Look at the periodic table to find the ion charge
- Calcium is a Group 2 metal, so its ion charge is ______
- Chlorine is a Group 17 metal, so its ion charge is

Step 2: Determine the number of ions needed to balance positive charges with negative charges.

- A calcium ion (Ca²⁺) has a charge of 2+
- A chloride ion (Cl⁻) has a charge of 1-
- Therefore, _____ chloride ions are needed to balance the positive charge of _____ calcium ion

Charge from Ca ²⁺	Charge from Cl⁻
A calcium ion has a charge of 2+. $1 \times (2+) = 2+$	A chloride ion has a charge of 1—. Therefore, two chloride ions are needed to balance the charge of one calcium ion. 2 × (1—) = 2—

Step 3: Use subscripts to write the formula (do not include a subscript if the subscript would be "1"). Remember to write the metal ion first.

• Recall: Two chloride ions are needed to balance the positive charge of one calcium ion

Hemingway	Na Na	me:

Therefore, the formula for calcium chloride is ______

Discussion Questions

- 1. What is the formula for aluminum sulphide? Show how you got there
- 2. Even though ionic compounds are made up of charged particles, they are electrically neutral. Why is this?

Time out

• Pg 94-95 in workbook

Multivalent metals form more than one ion

Multivalent metal: a metal element that can form ______ types of ions with different charges

Example: Copper can form ions with a _____or ___ charge

- A _____ is written after the name of the metal to distinguish between the ions
- Cu⁺: copper(I)
- Cu²⁺: copper(II)

Table 2.6 Roman Numerals

Metal Ion Charge	Roman Numeral
1+	I
2+	П
3+	III
4+	IV
5+	V
6+	VI
7+	VII

Writing Formulas for Ionic Compounds Containing Multivalent Metals

To write the chemical formula of a compound with a multivalent metal, follow the same process as for binary ionic compounds.

- Difference: You cannot tell the charge on the metal ion by looking at the periodic table, since there will be multiple charges listed
- Look at the in the name, which will tell you the charge
- Example: chromium(III) chloride tells you that the chromium ion is ______

Sample Problem: Writing Formulas for Ionic Compounds Containing Multivalent Metals (Step 1)

Problem:

What is the chemical formula for chromium(III) chloride?

Step 1: Identify each ion and its charge.

- Look at the periodic table to find the ion charge
- Chromium is a multivalent metal (ion charge can be 3+ or 2+). Its ion charge is 3+ since its name contains the Roman numeral "III": Cr³⁺
- Chlorine is a Group 17 metal, so its ion charge is 1-: Cl⁻

Step 2: Determine the number of ions needed to ______ positive charges with negative charges.

- A chromium ion (Cr³⁺) has a charge of _____
- A chloride ion (Cl⁻) has a charge of _____
- Therefore, _____ chloride ions are needed to balance the positive charge of chromium ion

Step 3: Use subscripts to write the formula (do not include a subscript if the subscript would be "1").

Remember to write the metal ion first.

- Recall: Three chloride ions are needed to balance the positive charge of one chromium ion
- Therefore, the formula for chromium(III) chloride is ______

Practice

Workbook Pg 96 #2 only

Naming Compounds with Multivalent metals

- The same naming rules apply as in other binary ionic compounds
 - In addition, in the name of the compound, Roman numerals are used following the positive ion to indicate ______ was used
- To determine which ion was used
 - Look at the ______ ion, determine what charge is coming from that side

Hemingway	Name:

- The negative ion is used because there is only____ charge
- Ex: TiF₄

Titanium has multiple charges

Fluorine is -1, if there is 4

$$4 \times -1 = -4$$

Therefore, in order for the overall charge of the compound to be 0, _____ must be coming from titanium. Since there is only _____ Titanium, we know the charge used was +4

Therefore the name is _____

Naming an Ionic Compound with a Multivalent Metal (Step 1)

Problem:

What is the name of Fe₂O₃?

Step 1: Identify each ion and its charge

- Look at the periodic table to find the ion charge
- Iron is a multivalent metal (ion charge can be 2+ or 3+): Fe²⁺ or Fe³⁺
- Oxygen's ion charge is 2-: O²⁻

Step 2: Determine the ratio of ions in the compound.

According to the formula, the compound has 2 iron (Fe) ions for every 3 oxide (O) ions

Step 3: The negative charges and the positive charges must be equal in magnitude for the compound to be electrically neutral. Which of the two possible iron ions achieves this balance?

- Recall:
 - Iron is a multivalent metal (ion charge can be 2+ or 3+): Fe²⁺ or Fe³⁺
 - Oxygen's ion charge is 2-: O²⁻
- Since there are __oxide ions, there is an overall negative charge of ____[calculation: 3 x (2-) = 6-]
- Since there are ____ iron ions, they must each have a charge of 3+ to give an overall positive charge of 6+ [calculation: 2 x (3+) = 6+]
 - Therefore the iron ion in this compound is Fe³⁺

Step 4: Write the name of the compound using a Roman numeral to indicate the charge of the metal ion.

Recall: The iron ion in this compound is Fe³⁺

Therefore, the name of Fe₂O₃ is ______

Discussion Questions

- 1. Explain why copper is able to form two different compounds with oxygen.
- 2. Why are Roman numerals included in the names of multivalent metal ions?

Time Out

Complete # 1 and #3 on pg 96 in the workbook.

Polyatomic ions are made up of more than one atom

Polyatomic ion: an ion made up of _____covalently bonded atoms

- Example: carbonate ion (CO₃²-)
 - ___carbon atom
 - ____ oxygen atoms
- There are a limited number of polyatomic ions that regularly occur in compounds

Common Polyatomic ions

Table 2.7 Names, formulas, and charges of some common polyatomic ions

1+ Charge	1— Charge	2- Charge	3— Charge
ammonium, NH ₄ +	acetate, CH ₃ COO ⁻ chlorate, ClO ₃ ⁻ chlorite, ClO ₂ ⁻ hydrogen carbonate, HCO ₃ ⁻ hydroxide, OH ⁻ nitrate, NO ₃ ⁻ nitrite, NO ₂ ⁻ permanganate, MnO ₄ ⁻	carbonate, CO ₃ ²⁻ chromate, CrO ₄ ²⁻ dichromate, Cr ₂ O ₇ ²⁻ peroxide, O ₂ ²⁻ sulfate, SO ₄ ²⁻ sulfite, SO ₃ ²⁻	phosphate, PO ₄ 3- phosphite, PO ₃ 3-

Naming ionic compounds containing Polyatomic ions

- Follows the same rules as binary ionic compounds
 - Exception: you change the name of the polyatomic
 - If the polyatomic is positive it will be written first and the non metal ion will change its suffix to "ide"

Hemingway Name:
• Example: NH ₄ Cl
 If the polyatomic is negative the metal ion will not change its name, since you do not change the polyatomic it also does not change. Example: NaNO₃
Writing Chemical Formulas of a Compound with a Polyatomic Ion (Step 1)
Problem:
What is the chemical formula for calcium nitrate?
Step 1: Identify each ion and its charge. Use Table 2.7 to find the formula of the polyatomic ion.
 Look at the periodic table to find the ion charge of calcium. Use Table 2.7 to find the formula and charge of nitrate.
• Calcium is a Group 2 metal, so its ion charge is 2+: Ca ²⁺
• Nitrate:
Step 2: Determine the number of ions needed to balance positive charges with negative charges.
A calcium ion (Ca ²⁺) has a charge of
• A nitrate ion (NO ₃ -) has a charge of
Therefore, nitrate ions are needed to balance the positive charge of one calcium ion
Step 3: Use subscripts to write the formula (do not include a subscript if the subscript would be "1").
If there is polyatomic ion needed, use parentheses to enclose the polyatomic ion before adding the subscript.
Recall: Two nitrate ions are needed to balance the positive charge of one calcium ion
Therefore, the formula for calcium nitrate is
Discussion Questions
1. What is a polyatomic ion?

2. How are parentheses used in writing formulas containing polyatomic ions?

Time OUT

• Complete page 97 in workbook