# How Do We Name and Write Formulas for Compounds?

# Activity

Names in Everyday life



# The chemical name of an ionic compound communicates its composition

#### **Binary ionic compound:**

- Made up of ions of one metal element and ions of one non-metal element; joined by ionic bonds
- Binary in chemistry means "composed of two elements



Figure 2.36: Potassium iodide is a binary ionic compound that is added to table salt to prevent iodine deficiency. Seaweed contains compounds that include iodide ion. Iodine deficiency leads to swellings called goiters.

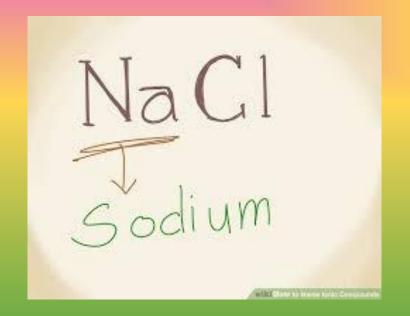
### **Names of Binary Ionic Compounds**

 The name of a binary ionic compound comes from the name of its elements.

#### Example: potassium iodide

- Write down the elements inside the compound
- The first part names the positive ion, potassium (K<sup>+</sup>)
  - In a binary ionic compound, the positive ion is always a metal and you do not change the name
- The second part names the negative ion, iodide (I<sup>-</sup>)
  - In a binary ionic compound, the negative ion is always a non-metal
  - Replace the ending of the non metal and add the suffix <u>-ide</u>
  - The negative ion of iodine is iodide

### Name the Following


- Ca<sub>3</sub>N<sub>2</sub>
  - calcium and nitrogen calcium nitride
- NaCl

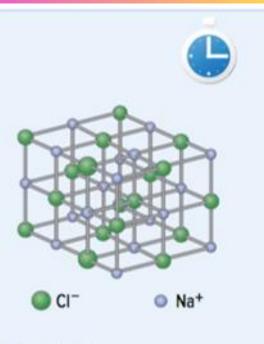
- K<sub>2</sub>O
- Li<sub>3</sub>N

#### Time out

Naming binary ionic compounds worksheet

 What is the difference between the name of a non-metal element and the name of the negative ion it forms?




### Activity

#### Activity

#### Ion Ratios

This diagram represents a crystal of sodium chloride. How does the structure of sodium chloride relate to its chemical formula? Follow these steps to find out:

- 1. Count the total number of ions of each element.
- Compare the total number of positive ions with the total number of negative ions.
- 3. What is the ratio of positive ions to negative ions for each compound?
- 4. The chemical formula of sodium chloride is NaCl. The chemical formula of calcium chloride, another ionic compound, is CaCl<sub>2</sub>. What ratio of ions would you expect to see in calcium chloride?



# You can determine the formula of an ionic compound from its name.

#### Formulas for binary ionic compounds:

- Positive ion (metal) first, negative ion (non-metal) second
- Subscripts indicate the ratio of each type of ion in the compound (no subscript: assume the number is 1)
- Chemical formula represents the <u>smallest (lowest terms)</u> repeating part of the crystal lattice (formula unit)

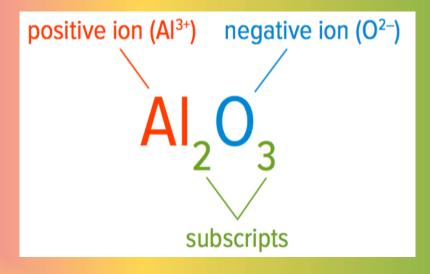



Figure 2.37: Formulas for ionic compounds are always written with the positive ion first and the negative ion second. In binary ionic compounds, the positive ion is a metal ion and the negative ion is a non-metal ion.

### Examples of Chemical Formulas of Binary Ionic Compounds

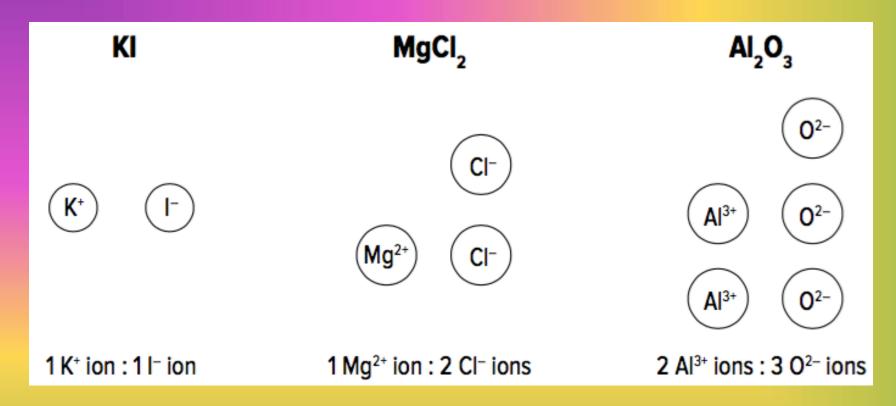
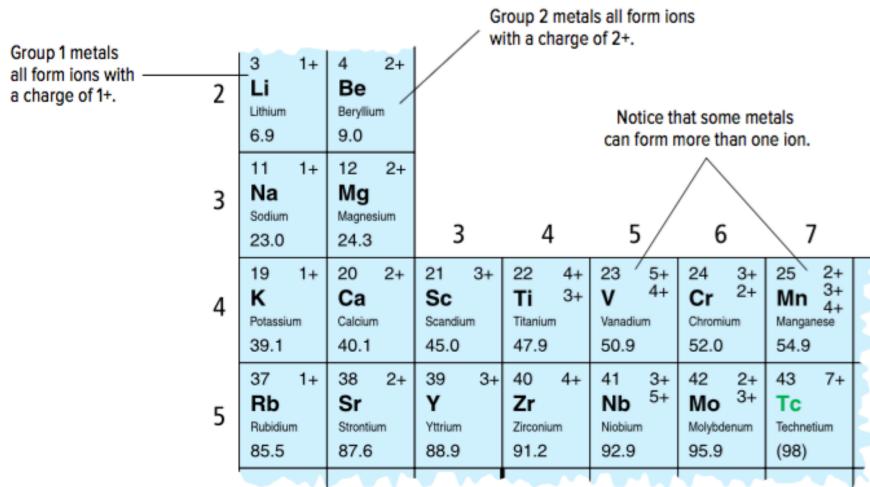



Figure 2.38: The subscripts in chemical formulas of ionic compounds tell you the ratio of the ions in the compound.

### Writing Formulas of Ionic Compounds

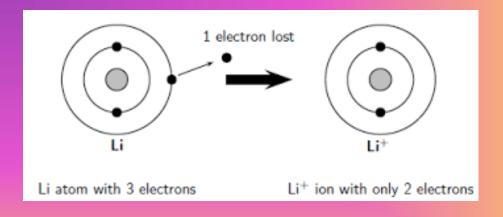
Although an ionic compound is made up of ions, the compound's overall charge is  $\underline{0}$  (it is electrically neutral)

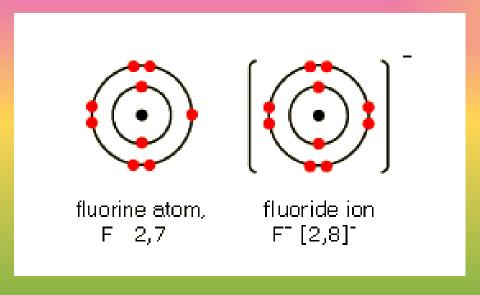

- Positive charges on the metal ions must balance the negative charges on the non-metal ions
- Example: Aluminum oxide has two aluminum ions, Al<sup>3+,</sup> and three oxide ions, O<sup>2-</sup>. What is the total charge?

| Charge from Al3+ ions                                                                          | Charge from Cl <sup>-</sup> ions                                                         |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| There are 2 aluminum ions in the formula, each with a charge of $3+$ .<br>$2 \times (3+) = 6+$ | There are 3 oxide ions in the formula, each with a charge of $2-$ . $3 \times (2-) = 6-$ |
| Total charge: (6                                                                               | s+) + (6-) = 0                                                                           |

### **Writing Formulas**

When need t


- For
- For
  - 5




nd, you first

a different

### What is the ion charge related to?





# Sample Problem: Writing the Formulas of Ionic Compounds (Step 1)

#### **Problem:**

What is the chemical formula for calcium chloride?

#### Step 1: Identify each ion and its charge

- Look at the periodic table to find the ion charge
- Calcium is a Group 2 metal, so its ion charge is 2+: Ca<sup>2+</sup>
- Chlorine is a Group 17 metal, so its ion charge is 1-: Cl

# Step 2: Determine the number of ions needed to balance positive charges with negative charges.

- A calcium ion (Ca<sup>2+</sup>) has a charge of 2+
- A chloride ion (Cl<sup>-</sup>) has a charge of 1-
- Therefore, two chloride ions are needed to balance the positive charge of one calcium ion

| Charge from Ca <sup>2+</sup>                           | Charge from Cl⁻                                                                                                                     |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| A calcium ion has a charge of 2+. $1 \times (2+) = 2+$ | A chloride ion has a charge of 1—. Therefore, two chloride ions are needed to balance the charge of one calcium ion.  2 × (1—) = 2— |

Step 3: Use subscripts to write the formula (do not include a subscript if the subscript would be "1"). Remember to write the metal ion first.

- Recall: Two chloride ions are needed to balance the positive charge of one calcium ion
- Therefore, the formula for calcium chloride is

CaCl<sub>2</sub>

### **Discussion Questions**

1. What is the formula for aluminum sulphide?

2. Even though ionic compounds are made up of charged particles, they are electrically neutral. Why is this?

### Time out

•Pg 94-95 in workbook

I'm a female.

Fe = Iron

Male = Man

Therefore I am Iron Man.

# Multivalent metals form more than one ion

Multivalent metal: a metal element that can form two or more types of ions with different charges

**Example**: Copper can form ions with a 1+ or 2+ charge

- A Roman numeral is written after the name of the metal to distinguish between the ions
- Cu<sup>+</sup>: copper(I)
- Cu<sup>2+</sup>: copper(II)



Figure 2.41: Although both of these compounds contain copper and oxygen, copper(II) oxide, CuO, is black and copper(I) oxide, Cu<sub>2</sub>O, is red.

# Writing Formulas for Ionic Compounds Containing Multivalent Metals

To write the chemical formula of a compound with a multivalent metal, follow the same process as for binary ionic compounds.

- Difference: You cannot tell the charge on the metal ion by looking at the periodic table, since there will be multiple charges listed
- Look at the Roman numeral in the name, which will tell you the charge
- Example: chromium(III) chloride tells you that the chromium ion is Cr<sup>3+</sup>

#### Table 2.6 Roman Numerals

| Metal Ion Charge | Roman Numeral |
|------------------|---------------|
| 1+               | I             |
| 2+               | II            |
| 3+               | III           |
| 4+               | IV            |
| 5+               | V             |
| 6+               | VI            |
| 7+               | VII           |

### Sample Problem: Writing Formulas for lonic Compounds Containing Multivalent Metals (Step 1)

#### **Problem:**

What is the chemical formula for chromium(III) chloride?

#### Step 1: Identify each ion and its charge.

- Look at the periodic table to find the ion charge
- Chromium is a multivalent metal (ion charge can be 3+ or 2+). Its ion charge is 3+ since its name contains the Roman numeral "III": Cr³+
- Chlorine is a Group 17 metal, so its ion charge is 1-: Cl

# Step 2: Determine the number of ions needed to balance positive charges with negative charges.

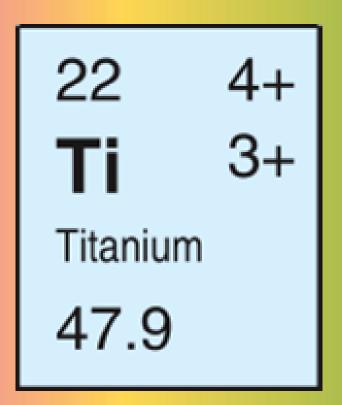
- •A chromium ion (Cr<sup>3+</sup>) has a charge of 3+
- •A chloride ion (Cl<sup>-</sup>) has a charge of 1-
- Therefore, three chloride ions are needed to balance the positive charge of one chromium ion

Step 3: Use subscripts to write the formula (do not include a subscript if the subscript would be "1").

Remember to write the metal ion first.

- Recall: Three chloride ions are needed to balance the positive charge of one chromium ion
- •Therefore, the formula for chromium(III) chloride is **CrCl**<sub>3</sub>.

## Practice


Workbook Pg 96 #2 only

# Naming Compounds with Multivalent metals

- The same naming rules apply as in other binary ionic compounds
  - In addition, in the name of the compound, Roman numerals are used following the positive ion to indicate which ion was used
- To determine which ion was used
  - Look at the negative ion, determine what charge is coming from that side
  - The negative ion is used because there is only one charge

• Ex: TiF<sub>4</sub>

Titanium has multiple charges Fluorine is -1, if there is 4  $4 \times -1 = -4$ 



Therefore, in order for the overall charge of the compound to be 0, +4 must be coming from titanium. Since there is only one Titanium, we know the charge used was +4

Therefore the name is titanium (IV) fluoride

# Naming an Ionic Compound with a Multivalent Metal (Step 1)

#### **Problem:**

What is the name of Fe<sub>2</sub>O<sub>3</sub>?

#### Step 1: Identify each ion and its charge

- Look at the periodic table to find the ion charge
- Iron is a multivalent metal (ion charge can be 2+ or 3+): Fe<sup>2+</sup> or Fe<sup>3+</sup>
- Oxygen's ion charge is 2-: O<sup>2</sup>-

# Step 2: Determine the ratio of ions in the compound.

 According to the formula, the compound has 2 iron (Fe) ions for every 3 oxide (O) ions

# Step 3: The negative charges and the positive charges must be equal in magnitude for the compound to be electrically neutral. Which of the two possible iron ions achieves this balance?

- Recall:
  - Iron is a multivalent metal (ion charge can be 2+ or 3+): Fe<sup>2+</sup> or Fe<sup>3+</sup>
  - Oxygen's ion charge is 2-: O<sup>2</sup>-
- Since there are 3 oxide ions, there is an overall negative charge of 6- [calculation:  $3 \times (2-) = 6-$ ]
- Since there are 2 iron ions, they must each have a charge of 3+ to give an overall positive charge of 6+ [calculation: 2 x (3+) = 6+]
- Therefore the iron ion in this compound is Fe<sup>3+</sup>

Step 4: Write the name of the compound using a Roman numeral to indicate the charge of the metal ion.

- Recall: The iron ion in this compound is Fe<sup>3+</sup>
- Therefore, the name of Fe<sub>2</sub>O<sub>3</sub> is iron(III) oxide

### **Discussion Questions**

- 1. Explain why copper is able to form two different compounds with oxygen.
- 2. Why are Roman numerals included in the names of multivalent metal ions?

### Time Out

Complete # 1 and #3 on pg 96 in the workbook.

# Polyatomic ions are made up of more than one atom

**Polyatomic ion**: an ion made up of two or more covalently bonded atoms

- Example: carbonate ion (CO<sub>3</sub><sup>2-</sup>)
  - 1 carbon atom
  - 2 oxygen atoms
- There are a limited number of polyatomic ions that regularly occur in compounds

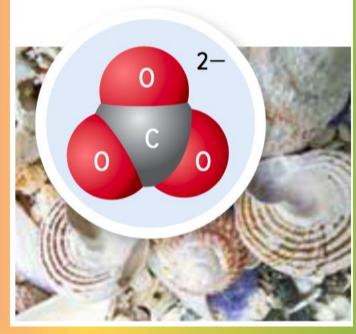



Figure 2.43: Shellfish use calcium carbonate to make their shells. The carbonate ion is shown here.

### Common Polyatomic ions

Table 2.7 Names, formulas, and charges of some common polyatomic ions

| 1+ Charge                              | 1— Charge                                                                                                                                                                                                                                                                                                                      | 2- Charge                                                                                                                               | 3— Charge                                                                         |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| ammonium, NH <sub>4</sub> <sup>+</sup> | acetate, CH <sub>3</sub> COO <sup>-</sup> chlorate, ClO <sub>3</sub> <sup>-</sup> chlorite, ClO <sub>2</sub> <sup>-</sup> hydrogen carbonate, HCO <sub>3</sub> <sup>-</sup> hydroxide, OH <sup>-</sup> nitrate, NO <sub>3</sub> <sup>-</sup> nitrite, NO <sub>2</sub> <sup>-</sup> permanganate, MnO <sub>4</sub> <sup>-</sup> | carbonate, $CO_3^{2-}$ chromate, $CrO_4^{2-}$ dichromate, $Cr_2O_7^{2-}$ peroxide, $O_2^{2-}$ sulfate, $SO_4^{2-}$ sulfite, $SO_3^{2-}$ | phosphate, PO <sub>4</sub> <sup>3-</sup> phosphite, PO <sub>3</sub> <sup>3-</sup> |

# Naming ionic compounds containing Polyatomic ions

- Follows the same rules as binary ionic compounds
  - Exception: you NEVER change the name of the polyatomic
  - If the polyatomic is positive it will be written first and the non metal ion will change its suffix to "ide"
    - Example: NH₄Cl
      - · ammonium chloride
  - If the polyatomic is negative the metal ion will not change its name, since you do not change the polyatomic it also does not change.
    - Example: NaNO<sub>3</sub>
      - sodium nitrate

# Writing Chemical Formulas of a Compound with a Polyatomic Ion (Step 1)

#### **Problem:**

What is the chemical formula for calcium nitrate?

Step 1: Identify each ion and its charge. Use Table 2.7 to find the formula of the polyatomic ion.

- Look at the periodic table to find the ion charge of calcium. Use Table 2.7 to find the formula and charge of nitrate.
- Calcium is a Group 2 metal, so its ion charge is 2+: Ca<sup>2+</sup>
- Nitrate: NO<sub>3</sub>

# Step 2: Determine the number of ions needed to balance positive charges with negative charges.

- A calcium ion (Ca<sup>2+</sup>) has a charge of 2+
- A nitrate ion (NO<sub>3</sub>-) has a charge of 1-
- Therefore, two nitrate ions are needed to balance the positive charge of one calcium ion

| Charge from Ca <sup>2+</sup>                                    | Charge from NO <sub>3</sub> <sup>-</sup>                                                                                              |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| A calcium ion has<br>a charge of $2+$ .<br>$1 \times (2+) = 2+$ | A nitrate ion has a charge of 1—. Therefore, 2 nitrate ions are needed to balance the charge of one calcium ion. $2 \times (1-) = 2-$ |

Step 3: Use subscripts to write the formula (do not include a subscript if the subscript would be "1").

If there is more than one polyatomic ion needed, use parentheses to enclose the polyatomic ion before adding the subscript.

- Recall: Two nitrate ions are needed to balance the positive charge of one calcium ion
- Therefore, the formula for calcium nitrate is Ca(NO<sub>3</sub>)<sub>2</sub>.

### **Discussion Questions**

1. What is a polyatomic ion?

2. How are parentheses used in writing formulas containing polyatomic ions?

### Time OUT

Complete page 97 in workbook