Hemingway

Atomic Theory and Periodic Trends

Organization of the Periodic Table

	Mendeleev ar chemical	ranges the elements in his periodic table based on physical and
• [Elements in the same	share similar properties
	Characteristics	s repeat in a predictable way
	• Why?	
	•	To answer this question, we need to look at the structure of the
What do	o you Know about At	toms?
	n your notebook, wi atom.	thout referring to you textbook, draw a diagram of a helium

• What information did you provide about the atom in your diagram?

Hemingway Name

Elements are made up of Atoms

• _____: Smallest unit of an element that has the properties of that element

Key Features of Atomic Structure

Each atom has a tiny, dense
 _____ with neutrons
 and protons

Nucleus is surrounded by	_, which exist in specific electron energy shell
--------------------------	--

• Most of the _____ of the atom is in the nucleus

Table 2.3 Subatomic Particles

Name	Relative Mass	Electric Charge	Symbol	Location in Atom
proton	1836	+	p ⁺	nucleus
neutron	1837	0	n ^o	nucleus
electron	1	_	e-	electron energy shells surrounding the nucleus

Comparing Sub Atomic Particles

- Calculating Sub Atomic Particles
 - In an atom
 - the proton # is equivalent to the ______
 - Ex: Carbon's atomic # is 6, how many protons?
 - Since an atom is neutral, the # of protons (+) is ______ to the # of electrons (-)
 - The majority of the mass of an atom comes from _____
 - Therefore protons + neutrons = _____

Hemingway Name

Time out

- · Complete "Parts of an atom" worksheet
- Calculate protons, neutrons and electrons for an atom of Lithium, Neon and Phosphorous

Bohr Diagrams Are a Useful Way to Model Atoms

Bohr diagrams represent the electron arrangements of atoms using

Show how many _____ occupy each specific energy level or shell

Bohr Diagrams and Energy Shells

First energy shell: maximum _____electrons

Second and third energy shell: maximum ______ electrons (for the first 20 elements)

Valence Shell

- Valence shell (______ energy shell)
 - occupied by valence electrons
 (______ in the outermost occupied energy shell of an atom)

This electron arrangement is written as 2,8,8.

Hemingway

Discussion Questions

1.	Draw a diagram o	f an atom, labelling protons,	, electrons, and neutrons,

2. List how many electrons can be found in the first, second and third energy shells.

- Drawing a Bohr Diagram
- Fill in your Bohr Diagram chart for the first 20 elements
 - Lets do the first couple together