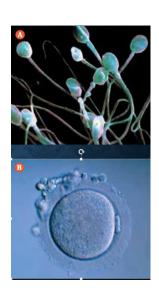

How do living things Sexually Reproduce?

Besides animals, what other things reproduce sexually?

Think of a family that has both biological parents and has 2 or more children

- #1 Consider what the parents look like, what the children look like
- #2 What features do they have in common? What are different characteristics?
- #3 How do you think we end up with our characteristics?
- #4Why do you think offspring from the same parents look different?


Sexual Reproduction

Animals and many other living things reproduce
--

- When living things reproduce sexually, the offspring is
- Half of the offspring's DNA comes from the _____ parent, and the other half from the _____ parent.
- The cells contributed by the male and female are the sex cells or

Sexual Reproduction Involves Sex Cells

- Gametes:
 - Male or female

- Male gamete
 - _____ produced in testes
- Female gamete
 - _____ produced in ovaries

Sex Cells

- Central event of sexual reproduction:
 - ______ between the gametes (sperm and egg)
 - Sperm and egg (and their genetic information) _____to produce a new cell that develops into an offspring

Fertilization: the process in which male and female gametes

Internal Fertilization

- Some organisms like Humans carry out ______ fertilization, in which fertilization occurs_____ the female.
 - Nuclei of two gametes ______ together to form a <u>single cell</u> called a
 - Zygote contains _____ information from the sperm cell and egg cell

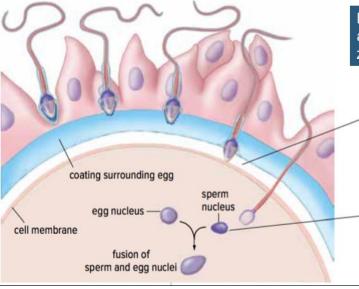


Figure 1.17: When a sperm cell fertilizes an egg cell, the two nuclei fuse and a zygote forms.

Sperm cells reach a jelly-like coating surrounding the egg cell and release substances that digest a path through the coating. This helps sperm cells get closer to the cell membrane of the egg.

The head of one sperm cell eventually enters the egg cell, where the sperm nucleus fuses with the egg nucleus.

External Fertilization

- Some species, like salmon, carry out ______
 fertilization.
- In this process, the female deposits _____eggs and males release_____over the eggs

Activity! Comparing Internal and External Fertilization

Question!

How do we reproduce sexually but still keep the same number of chromosomes in our cells

Homologous pair of

Chromosomes

- Each species has a ______ of chromosomes in its cells.
 - Gold Fish = 94
 - Fruit Flies =
 - Humans = 46

Chromosome Number

- Humans have ____chromosomes that are organized into ____ pairs
 - Chromosomes that are paired are called *chromosomes*
 - During fertilization, each parent contributes _____
 chromosome of each pair
 - Homologous chromosomes have similar features and carry
 genetic information

Versions of a Gene

- _____: different forms of the same gene
 - Eg. A homologous chromosome will have _____ different alleles for the same gene

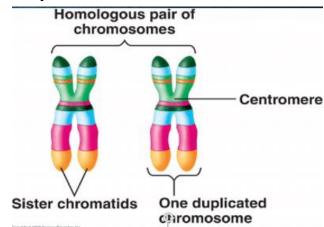
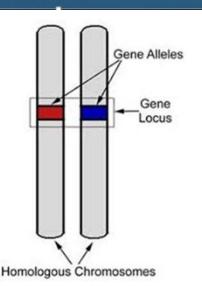
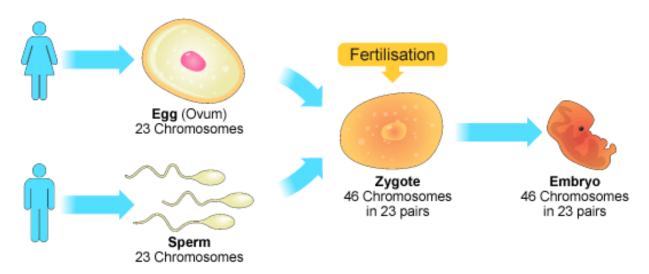
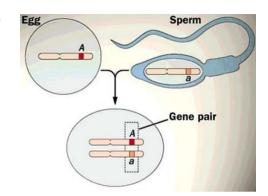



Figure 1.18: In a pair of homologous chromosomes, the female parent contributes one chromosome, and the male parent contributes the other.



If sexual reproduction involves the fusing (combination) of genetic material from two individuals, then why doesn't the offspring have twice the number of chromosomes as their parents?

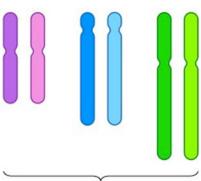
Activity: Halves of a Whole


Sexual Reproduction

- Since gametes combine in sexual reproduction, each gamete must have ______
 the number of chromosomes than other body cells.
- This ensures the correct number of chromosomes in each _____ from generation to generation.

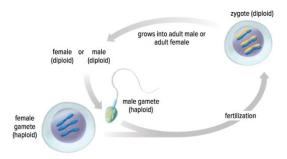
Haploid and Diploid

- Cells with half the normal number of chromosomes are called ______
 - _____ (egg and sperm) are **haploid** cells
- Our body cells have the _____number of chromosomes, so they are called _____cells



Haploid (n) One copy of each chromosome

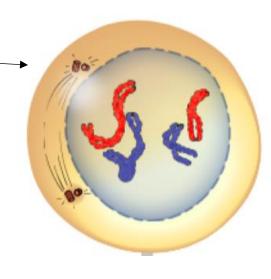
Three non-homologous chromosomes

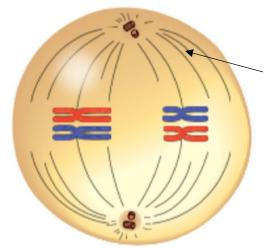

Diploid (2n) Two copies of each chromosome

Three pairs of homologous chromosomes (of maternal and paternal origin)

Fill In The Blank

Using pg 49 in your textbook fill out and colour the diagram

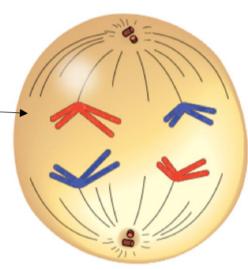

How do diploid organisms produce haploid gametes?

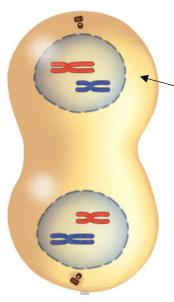

Meiosis

- Cells that produce gametes undergo a type of _____ called *meiosis*
 - Meiosis:
 - a diploid cell divides ______ to produce _____ haploid cells
 - Offspring are genetically _____ from parents and from one another (gametes from parents are not genetically the same)
 - Process of ______the homologous chromosomes

Meiosis: Prophase I

- Nuclear membrane begins to disappear
- DNA condenses into duplicated chromosomes
- _____ chromosomes are paired



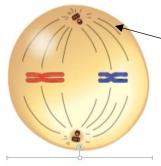

Meiosis: Metaphase I

- Spindle fibres guide chromosome movement
- Homologous chromosome pairs line up along the of the cell

Meiosis: Anaphase I

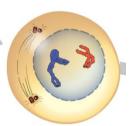
 Homologous chromosome _____ and go to each end of the cell

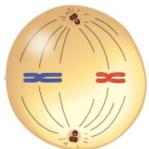



Meiosis: Telophase I

- Two nuclei form
- Each nucleus contains a ______ of the cell's DNA
- Cell divides, forming _____ cells

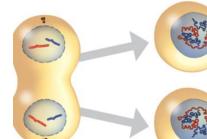
Meiosis: Prophase II


- Nuclear membrane begins to disappear

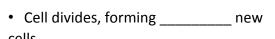


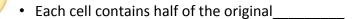
Meiosis: Metaphase II

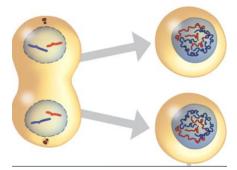
• Chromosomes line up along the middle of the cell



Meiosis: Anaphase II


• Copies of DNA are separated and go to each end of the cell




Meiosis: Telophase II

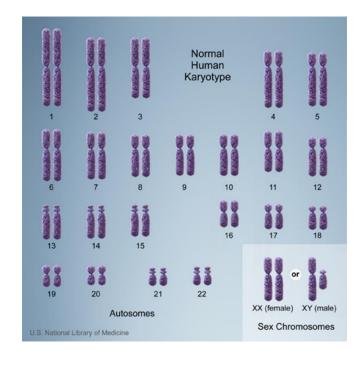
• Four nuclei form

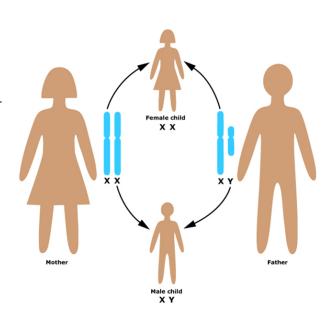
- "It's in the Cards"
- Mitosis Vs Meiosis:
 - How is meiosis similar to mitosis?
 - How is it different?

Karyotype

The ______of an organism's chromosomes from one body cell

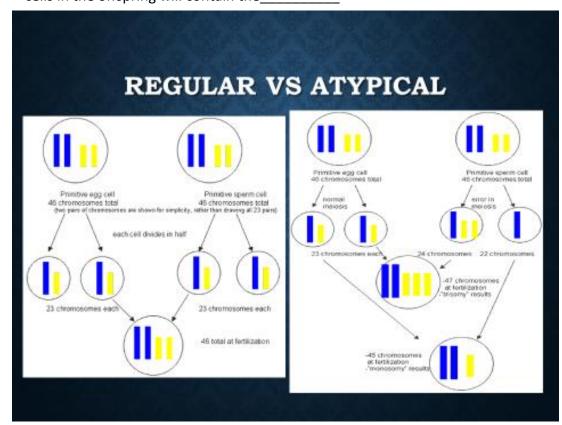
Sex Chromosomes


- Sex chromosomes determine the
 _____ of an individual
- Control the primary and secondary sexual characteristics of
- Consist of an ___ chromosome and ___ chromosome


Females

- Have two chromosomes
- Meiosis
 - Can only produce gametes with an _____ chromosome
 - All have one X chromosomes

Males


- Have one ____ chromosome and one chromosome
- Meiosis
 - Can produce gametes with either Y chromosome or X chromosomes
 - ____ of the sperm will have X and other____ will have Y

What happens when Meiosis goes wrong???

- Occasionally _____ in meiosis can occur
- Many of these errors result in gametes that do not ______
- However if they do survive and reach fertilization they will produce a
- Since every cell in an offspring is produced from _____ zygote cell, all of the cells in the offspring will contain the

- What can this result in?
 - Down Syndrome
 - 47 chromosomes
 - Sex Chromosome Disorders
 - Turners Syndrome
 - Female born with only one X chromosome
 - Do not develop at puberty/cannot reproduce
 - Klinefelter Syndrome
 - Males born with two X chromosomes
 - Cannot reproduce