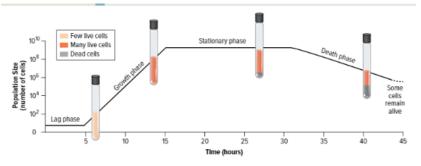

Types of Asexual Reproduction - Part 1


- · Exist all around us
- Microorganisms that exist as a single _____ cell
- Reproduces via _______
 - Type of ______ reproduction
- Binary Fission
 - A parent cell splits into two individual, ______ (daughter cells)
 - Daughter cells have identical ______ information (DNA)
 - Colour code the DNA on your diagram

Growth

- After each cycle of binary fission, the number of cells ______. The time it takes for many bacteria to double (doubling time) is ______ minutes
- So under the right conditions, a small colony can grow to _____ in short amount of time
- · What conditions affect bacterial growth?

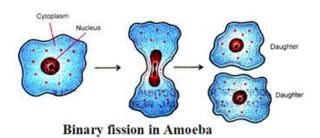
Activity 1-d on page 36 in textbook

Question?

- Do any of your body cells reproduce asexually? If so, how often? Why would this occur?
- All _____ cells reproduce by the cell cycle.

Complete Activity Page 25 in your textbook

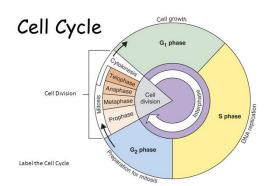
Cell Cycle


- Currently cells in your body are _______
- Skin cells, stomach cells and many more are being made to replace _____cells
- Cell reproduction is needed for the body to _____
 - Imagine you scrape your knee
 - The wound heals because of the ability of your skin cells to replace the ones that were damaged

Reproduction and the cell cycle

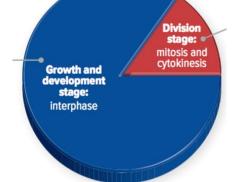
Replacing damaged cells is only one reason that eukaryotic cells

Functions of eukaryotic cell reproduction:

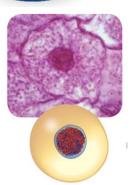

- Replace _____ cells
- Replace _____ cells
- Produce _____ in singlecelled organisms (amoebas)

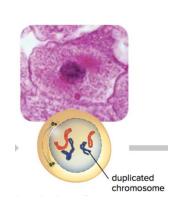
- Eukaryotic cells reproduce by a series of events called the cell cycle
- The cell cycle has two stages with different events:
 - Growth and development

•


- Cell division
 - •
 - Cytokinesis

Growth and Development: Interphase


- The phase of _____and working
- _____ of the total time of the cell cycle
- During this time the cell makes _____ of all of its organelles
- Once large enough it will ______ its chromosomes (DNA)
- When the chromosome replicates it is known as



Cell Division: Phase 1 of Mitosis (_____)

- Sister chromatids formed during Interphase shorten and thicken
 - Each chromosome contains ______ of the same DNA
 - Sister chromatids have joined at the center and now look like an X
 - Nuclear membrane ______ to allow chromosomes to spread out
 - _____ move to opposite poles of the cell
 - Form _____ which will later move the
 - chromosomes

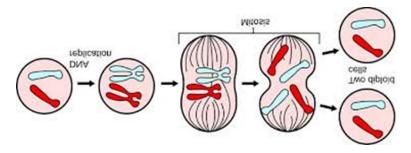
Cell Division: Phase 2 of Mitosis (_____)

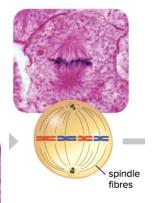
- Sister chromatids______ to the spindle fibers and line up along the "middle plate"
- Spindle fibers guide chromosome ______
- Chromosomes line up along the _____ of the cell

Cell Division: Phase 3 of Mitosis (_____)

- Sister chromatids are pulled _______
- Now called _____

Cell Division: Phase 4 of Mitosis (_____)


- 2 ______ form
- Spindle disappears
- Chromosomes lengthen and thin
- Each nucleus contains a ______ of the cell's DNA


Cell Division: Cytokinesis

- Cytoplasm and organelles are ______
- Two _____ cells form
- The cells then begin _____

Mitosis: Summary

- Results of Mitosis
- 1 parent cell produces _____ identical daughter cells

