Types of Asexual Reproduction - Part 1 - · Exist all around us - Microorganisms that exist as a single _____ cell - Reproduces via _______ - Type of ______ reproduction - Binary Fission - A parent cell splits into two individual, ______ (daughter cells) - Daughter cells have identical ______ information (DNA) - Colour code the DNA on your diagram #### Growth - After each cycle of binary fission, the number of cells ______. The time it takes for many bacteria to double (doubling time) is ______ minutes - So under the right conditions, a small colony can grow to _____ in short amount of time - · What conditions affect bacterial growth? #### Activity 1-d on page 36 in textbook #### Question? - Do any of your body cells reproduce asexually? If so, how often? Why would this occur? - All _____ cells reproduce by the cell cycle. #### **Complete Activity Page 25 in your textbook** #### **Cell Cycle** - Currently cells in your body are _______ - Skin cells, stomach cells and many more are being made to replace _____cells - Cell reproduction is needed for the body to _____ - Imagine you scrape your knee - The wound heals because of the ability of your skin cells to replace the ones that were damaged #### Reproduction and the cell cycle Replacing damaged cells is only one reason that eukaryotic cells #### Functions of eukaryotic cell reproduction: - Replace _____ cells - Replace _____ cells - Produce _____ in singlecelled organisms (amoebas) - Eukaryotic cells reproduce by a series of events called the cell cycle - The cell cycle has two stages with different events: - Growth and development • - Cell division - • - Cytokinesis #### **Growth and Development: Interphase** - The phase of _____and working - _____ of the total time of the cell cycle - During this time the cell makes _____ of all of its organelles - Once large enough it will ______ its chromosomes (DNA) - When the chromosome replicates it is known as _____ ## Cell Division: Phase 1 of Mitosis (_____) - Sister chromatids formed during Interphase shorten and thicken - Each chromosome contains ______ of the same DNA - Sister chromatids have joined at the center and now look like an X - Nuclear membrane ______ to allow chromosomes to spread out - _____ move to opposite poles of the cell - Form _____ which will later move the - chromosomes ## Cell Division: Phase 2 of Mitosis (_____) - Sister chromatids______ to the spindle fibers and line up along the "middle plate" - Spindle fibers guide chromosome ______ - Chromosomes line up along the _____ of the cell ### Cell Division: Phase 3 of Mitosis (_____) - Sister chromatids are pulled _______ - Now called _____ # Cell Division: Phase 4 of Mitosis (_____) - 2 ______ form - Spindle disappears - Chromosomes lengthen and thin - Each nucleus contains a ______ of the cell's DNA ### **Cell Division: Cytokinesis** - Cytoplasm and organelles are ______ - Two _____ cells form - The cells then begin _____ ### **Mitosis: Summary** - Results of Mitosis - 1 parent cell produces _____ identical daughter cells