Calculus 12

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Name: \qquad
Ch 2.1 The Tangent and Velocity Problems
Date: \qquad
We know how to find the slope of a line, and how to find the slope between two points, but how do you find the slope of a CURVE?
Well, a curve doesn't have just one slope, but you can find the slope \qquad at a given part of the curve

Tangent: a line having ONE point of contact with a curve (in the area of interest)

Secant: a line having TWO points of contact with a curve (in the area of interest)

Problem: Find the equation of the tangent line to the parabola $f(x)=x^{2}$ at the point $(1,1)$.
We can estimate the slope with secant lines of points that get closer and closer together

$$
\begin{aligned}
\text { slope } & =\frac{5-2}{2.8-2} \\
= & \frac{3}{0.8}=3.75
\end{aligned}
$$

$$
\begin{aligned}
\text { slope } & =\frac{3-2}{2.3-2} \\
& =\frac{1}{0.3}=3 . \overline{3}
\end{aligned}
$$

As the points come closer together, the slope gets closer and closer to the slope of
Equation:

The slope of the secant line is like an \qquad average rate of change. The slope of the tangent line is like an instantaneous rate of change.

Problem: A ball is dropped from the roof of a building that is 40 m tall. If its height above the ground is given by the equation $\mathrm{d}=40-4.9 \mathrm{t}^{2}$, find its velocity at time $=2$ seconds.

$$
\begin{aligned}
& \uparrow \\
& \text { time (s) } \\
& =-19.551 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

as time difference is reduced, we get closer $*$ closer to an instantaneous speed of $\sim-19.56 \mathrm{~m} / \mathrm{s}$

Assignment:

