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Ch 2.1 The Tangent and Velocity Problems Date:

We know how to find the slope of a line, and how to find the slope between two points, but how do you find the
slope of a CURVE?
Well, a curve doesn’t have just one slope, but you can find the slope ot a ﬁU =L ‘(DAC‘/Q Of@ 'd«é Cucyt_

Tangent: a line having ONE point of contact Secant: a line having TWO points of contact with a curve
with a curve (in the area of interest) (in the area of interest)

Problem: Find the equation of the tangent line to the parabola f(x) = x” at the point (1,1).
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As the points come closer together, the slope gets closer and closer to the slope of A {dﬂ@en’t lye ot
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The slope of the secant line is like an  AAVE( 5‘8’6 rate of change. The slope of the tangent line is

like an I‘ﬂS’kfm’&MQo(A <, rate of change.

Problem: A ball is dropped from the roof of a building that is 40m tall. If its height above the ground is given
by the equation d =40 — 4.9 %, find its velocity at time 32 seconds.
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Assignment: |Section 2.1 p69 #2, 4, 6, 8




