

Extra Practice 2 Master 5.33 Lesson 2: Comparing and Ordering Fractions **1.** Draw two 12-cm number lines. Show thirds on one line. Show twelfths on the other line. Use the number lines. Which fraction is greater, $\frac{2}{3}$ or $\frac{7}{12}$? **2.** What is greater, $\frac{3}{6}$ or $\frac{3}{6}$? How do you know? **3.** Use >, <, or = to make each statement true. **a)** $\frac{3}{4} \Box \frac{9}{12}$ **b)** $\frac{7}{10} \Box \frac{2}{5}$ **C)** $\frac{5}{6} \Box \frac{15}{18}$ **d**) $\frac{1}{4} \square \frac{3}{8}$ **e)** $\frac{1}{2} \Box \frac{9}{16}$ **f**) $\frac{4}{5} \Box \frac{16}{20}$ 4. Order the fractions from least to greatest. **b)** $\frac{3}{8}, \frac{7}{8}, \frac{3}{4}$ **a)** $\frac{1}{3}, \frac{1}{2}, \frac{1}{4}$ **C)** $\frac{5}{6}, \frac{1}{2}, \frac{2}{3}$ 5. A wall has 30 tiles. One-fifth of the tiles are pink. One-half of the tiles are blue. The rest of the tiles are yellow. a) What fraction of the tiles is yellow? b) What colour is the greatest number of tiles? c) What colour is the least number of tiles? 6. Use three 15-cm strips of paper. Show thirds on one strip. Show fifteenths on one strip. Show fifths on one strip. Use the strips to order these fractions from least to greatest: $\frac{4}{15}$, $\frac{2}{3}$, $\frac{3}{5}$

	Extr	a Practice 4				
Le	Lesson 4: Relating Fractions to Decimals					
1.	Write each fraction	n as a decimal.				
	a) $\frac{21}{100}$	b) $\frac{7}{10}$	C)	$\frac{1}{10}$	d) $\frac{79}{100}$	
2.		cks to represent eac action as a decimal		fraction.		
	a) $\frac{1}{4}$	b) $\frac{9}{10}$	C)	$\frac{2}{5}$	d) $\frac{4}{25}$	
	e) $\frac{1}{2}$	f) $\frac{3}{4}$	g)	$\frac{4}{5}$	h) $\frac{6}{20}$	
3.	Copy and complete	e. Use >, <, or =.				
	a) $\frac{50}{100}$ \Box $\frac{1}{2}$	b) $\frac{76}{100}$ \Box 0.17	C)	$0.8 \square \frac{80}{100}$		
	d) 0.75 □ ¹ / ₄	e) $\frac{7}{10}$ \Box 0.7	f)	$\frac{1}{10}$ \square $\frac{3}{5}$		
4.	Write 2 equivalent	fractions for each d	leci	mal.		
	a) 0.40	b) 0.25	C)	0.90	d) 0.8	
5.	Dallas had $\frac{3}{5}$ of a c How much money What coins might h		of	the day at the a	musement park.	
6.	Write each decima	I as a fraction.				
	a) 0.3	b) 0.92	C)	0.26		
	d) 0.1	e) 0.53	f)	0.9		

Lesson 5: Fraction						
 Draw 10-cm num Use the number I greatest. 	ber lines. Label thei ines to order each s					1.0
a) 0.4, 0.3, 0.8 c) 0.25, 0.50, 0.1	0	b) 0.2, (d) 0.70,	0.9, 0.5 0.30, 0.	20		
 2. Use a number line and decimal benchmarks to compare the numbers in each pair. a) ⁴/₁₀ and 0.3 b) ³/₅ and 0.8 c) ¹/₅ and 0.2 						
 Write a decimal for Which decimal be Order the decimand a) 	enchmark (0.0, 0.5,	1.0) is ead	ch decim	al clos	est to?	
						_
						-
4. Order the decima	Is in each set					
from least to grea	test.					
from least to grea a) 0.2, 0.50, 0.84	test. b) 0.49, 0.7, 0.3					
from least to grea a) 0.2, 0.50, 0.84	test.					
 a) 0.2, 0.50, 0.84 c) 0.05, 0.6, 0.2 5. Copy and complete 	test. b) 0.49, 0.7, 0.3 d) 0.11, 0.5, 0.17					

 $\overline{}$

Date _____

(м	aster 5.36 Extr	a Practice 6				
Le	Lesson 6: Exploring Thousandths					
1.	Write each fraction a) $\frac{231}{1000}$	as a decimal. b) ¹⁷³ / ₁₀₀₀	c)	$\frac{8}{1000}$		
	d) $\frac{6}{1000}$	e) $\frac{9}{1000}$	f)	$\frac{784}{1000}$		
2.	Write each decima	ll as a fraction.				
	a) 0.436	b) 0.16	C)	0.004		
	d) 0.102	e) 0.18	f)	0.3		
3.	Use the data in the	e table.		Counter	Flicking	
	Write the number t	hat has:	С	ontestant	Distance (m)	
	a) a 1 in the tenths			Roald	0.938	
	b) a 6 in the thousandths place			Janet	2.407	
	c) the same digit in			Rudy	0.979	
	thousandths pla			Bertram	4.112	
	d) a 2 in the onese) a 5 in the hundr			Sayid	1.456	
		editis place				
4.	Write an equivalen	t decimal for each	nun	nber.		
	a) 0.05	b) 2.35		1.6	d) 8.43	
5.	Record each numb a) 823 thousandth d) 1.009	-		ousandths		
6.	Describe the value a) 3.126	e of each digit in ea b) 0.104		lecimal. 5.149		
	uj 0.120		0)	0.170		

Name	
------	--

Master 5.37 Extra Practice 7				
Lesson 7: Comparing and Ordering Decimals				
1. Copy and co	omplete. Use =, >, or <.			
a) 0.7	_0.2 b) 2.05 2.01 c) 7.462	7.460	
d) 1.7	_1.70 e) 0.68 0.684 f	3.512	3.9	
 a) 0.439, 1.0 c) 6.327, 6.0 3. Write a number of a structure and a	imbers from least to greatest. 004, 0.37 b) 2.83, 1.9, 0.29 019, 6.8 d) 3.105, 3.6, 5.1 ber that is between each pair of 2.361 b) 8.014 and 8.1 0.459 d) 1.238 and 1.24 mal with thousandths to make of each set is closest to 5? er in each set is closest to 5? 998, 5.104 b) 4.763, 5.933, 5	2 of numbers. 4 each statemen .001 > .2 >	t true.	
6. Use the data		Masses c	of Our Pets	
, , ,	t is heaviest?		Mass (kg)	
b) Which pe	t is heavier than Gordon	Moose	33.566	
, <i>,</i> ,	r than Scooter?	Maggie	4.082	
-	heavier than Maggie but	Scooter	9.525	
· · ·	an Scooter. What might his	Tiny	33.512	
mass be?	•	Gordon	0.453	

Name	

Date _____

(M	aster 5.38	Extra Praction	ce 8		
Le	esson 8: Using	g Decimals to	Relate Unit	ts of Measure	
1.	Copy and con	nplete.			
	a) 7 m =	cm b)	24 mm =	cm	
	c) 16 cm =	m d)	5 m =	_ mm	
	e) 23 m =	cm f)	84 cm =	m	
2.	a) 73 cm		c C	l metres.) 1 cm) 4 cm	d) 231 cm h) 38 cm
3.	a) 1 m		С	l centimetres.) 0.9 m) 0.3 m	d) 2 m h) 0.5 m
4.	a) 500 mm		n c	d metres.) 894 mm) 6 mm	d) 176 mm h) 82 mm
5.		of each length b) 4 cm) 18 cm	d) 0.132 m
6.	• •	jumped 3.75 cr		? By how much?	?
7.	Copy and con	nplete. Use =, :	>, or <.		
	a) 2.25 m	80 cm	b) 456 cm	1.46 m
	c) 27 mm) 2000 mm	

M	laster 5.39 Ex	tra Practice 9			
Le	Lesson 9: Relating Fractions and Decimals to Division				
1.	Write each fraction	on as a division sta	atement.		
	a) $\frac{1}{2}$ e) $\frac{2}{3}$	b) $\frac{3}{4}$ f) $\frac{4}{5}$	c) $\frac{5}{8}$ g) $\frac{1}{6}$	d) $\frac{1}{7}$ h) $\frac{3}{10}$	
2.	a) 3 ÷ 6	on statement as a b) 5 ÷ 8 f) 8 ÷ 14		d) 6 ÷ 10 h) 7 ÷ 9	
3.	a) 8 ÷ 3	ch remainder as a b) 24 ÷ 9 f) 150 ÷ 8	c) 200 ÷ 7	d) 16 ÷ 5 h) 19 ÷ 3	
4.	a) 25 ÷ 2	ch remainder as a b) 17 ÷ 5 f) 53 ÷ 2	c) 199 ÷ 4	d) 93 ÷ 5 h) 16 ÷ 5	
5.		er as a decimal. hare a prize of \$25 es each person ge			
	-	9 m of ribbon to de bon can he use for	-		
	•	kg of birdseed to c Victor put in each f	•	ders. How much	
6.	U 1	e crusts from one t of flour will she ne	0	crusts?	

Master 5.40	Extra Practice 10

- Lesson 10: Estimating Sums and Differences 1. Estimate each sum. a) 8.1 + 7.2 b) 6.51 + 4.03 c) 7.358 + 2.71d) 4.758 + 3.164 e) 0.943 + 0.995 f) 3.568 + 2.541g) 5.09 + 4.94 h) 6.281 + 7.142 i) 0.415 + 0.3272. Estimate each difference. a) 26.18 - 20.92 b) 5.384 - 2.111 c) 8.43 - 2.251d) 2.205 - 0.973 e) 6.275 - 1.184 f) 7.042 - 3.962g) 0.736 - 0.002 h) 9.428 - 4.969 i) 3.849 - 1.9323. Wolfgang is 1.476 m tall. His brother is 1.042 m tall. Estimate the difference in their heights. 4. The CN Tower is 553.339 m tall. The Calgary Tower is 190.804 m tall. Estimate the difference in their heights. 5. The average depth of the Caribbean Sea is 2.575 km. The average depth of Hudson Bay is 0.093 km.
- Estimate the difference in their depths.
- **6.** Calli drank 1.756 L of water during Track and Field Day. Arthur drank 0.987 L. About how much more water did Calli drink than Arthur?

M	aster 5.41 Extra Practice 11
Le	esson 11: Adding Decimals
1.	Add. a) 4.3 + 1.3 b) 9.2 + 4.4 c) 4.25 + 3.76 d) 5.24 + 4.31 e) 0.52 + 3.76 f) 16.24 + 24.16
2.	Add. Think about equivalent decimals when you need to. a) 3.57 + 8.6 b) 7.4 + 3.51 c) 0.81 + 4.9 d) 27.34 + 8.59 e) 8.37 + 9.4 f) 62.1 + 35.76
3.	The decimal point is missing in each sum. Use estimation to place each decimal point. a) 3.54 + 7.62 = 1116 b) 31.58 + 42.04 = 7362 c) 3.8 + 4.7 + 9.5 = 180 d) 73.4 + 2.65 + 0.8 = 7685
4.	The decimal point in each sum is in the wrong place.Write the sum with the decimal point in the right place.a) $3.76 + 4.97 = 87.3$ b) $25.91 + 42.76 = 6.867$ c) $0.84 + 2.76 = 36.0$ d) $4.81 + 7.36 = 121.7$
5.	Add. a) \$24.67 b) 7.63 c) 94.12 d) \$1.54 <u>+ 21.42</u> <u>+ 8.45</u> <u>+ 8.03</u> <u>+ 8.76</u>
6.	Write a story problem that can be solved by adding two decimals with hundredths. Solve your problem.

Master 5.42 Extra Practice 12	
Lesson 12: Subtracting Decimals	
 1. Subtract. a) 9.7 - 4.3 b) 8.6 - 2.9 d) \$15.42 - \$9.83 e) 75.42 - 25.31 	c) 3.25 – 1.42 f) 18.92 – 4.25
 2. Subtract. Think about equivalent deci a) 5.76 - 2.3 b) \$2.59 - \$1.57 d) 84.6 - 31.7 e) 13.92 - 4.7 	c) 8.7 – 3.24
 The decimal point is missing in each Use estimation to place the decimal p 	
a) 14.53 – 12.68 = 185 c) 11.9 – 4.6 = 73	b) 3.45 - 0.61 = 284 d) 25.73 - 14.86 = 1087
4. The decimal point in each difference Write the difference with the decimal	01
 a) 9.76 - 2.38 = 73.8 c) 4.18 - 0.37 = 38.1 	 b) 37.92 - 14.26 = 236.6 d) 85.76 - 41.35 = 4.441
5. Subtract. a) 8.4 b) 6.58 c) 92.41 d) <u>- 2.7</u> <u>- 0.23</u> <u>- 3.78</u> <u>-</u>	
 Write a story problem that can be solv with hundredths. 	ved by subtracting two decimals

Solve your problem.

Extra Practice 13 Master 5.43 Lesson 13: Adding and Subtracting Decimals **1.** Add. **a)** 1.685 + 4.937 **b)** 5.148 + 3.227 **c)** 0.367 + 4.996 **d)** 61.239 + 8.468 2. Subtract. **a)** 13.352 - 7.166 **b)** 5.891 - 1.309 c) 11.026 - 6.382 d) 9.405 - 3.881 **3.** Add or subtract. **a)** 6.941 – 2.34 **b)** 3.85 + 7.206 **c)** 1.456 + 0.937 **d)** 8.142 + 0.51 **e)** 2.856 - 1.23 **f)** 5.34 - 1.9 **4.** Use estimation to place the decimal point in each sum or difference. a) 3.657 + 5.544 = 9201b) 8.156 + 4.189 = 12345c) 7.854 - 2.499 = 5355d) 8.004 - 5.4 = 2604e) 24.316 - 20.452 = 3864f) 16.134 + 8.009 = 241435. Maude is mixing 1.36 L of pineapple juice, 355 mL of orange juice, and 2 L of ginger ale to make a fruit punch. Will the liquids fit in a 4-L bowl? Explain.

Use each of the digits 0 to 9 once.
 Make 2 decimals with thousandths whose sum is close to 50.

Extra Practice Sample Answers Master 5.44

Extra Practice 1 – Master 5.32

Lesson 1

- **1.** a) $\frac{2}{10}$ and $\frac{1}{5}$ b) $\frac{3}{9}$ and $\frac{1}{3}$
- 2. Student's art should show 6 equal objects, 3 of which are shaded.
- 3. For example:

a) $\frac{3}{15}$, $\frac{4}{20}$, $\frac{5}{25}$	b) $\frac{9}{12}$, $\frac{12}{16}$, $\frac{15}{20}$
c) $\frac{3}{9}$, $\frac{4}{12}$, $\frac{5}{15}$	d) $\frac{6}{30}$, $\frac{8}{40}$, $\frac{10}{50}$
For example:	
a) $\frac{8}{12}$, $\frac{6}{9}$, $\frac{4}{6}$	b) $\frac{4}{6}$, $\frac{2}{3}$, $\frac{32}{48}$

- 4.
 - **a**) $\frac{1}{12}$, $\frac{1}{9}$, $\frac{1}{6}$ **b**) $\frac{1}{6}$, $\frac{1}{3}$, $\frac{52}{48}$
 - **c)** $\frac{10}{15}$, $\frac{8}{12}$, $\frac{4}{6}$ **d)** $\frac{4}{8}$, $\frac{2}{4}$, $\frac{1}{2}$
- 5. Student's art should show: a) 10 equal objects, 5 of which are shaded
 - b) 9 equal objects, 6 of which are shaded
 - c) 8 equal objects, 6 of which are shaded
 - d) 10 equal objects, 2 of which are shaded
- **6.** a, c, d, and e
- **7.** a) $\frac{2}{12}$ and $\frac{1}{6}$ b) $\frac{10}{12}$ and $\frac{5}{6}$

Extra Practice 2 – Master 5.33

Lesson 2

- 1. Student answers should consist of two number lines 12-cm long, one showing thirds and the other showing twelfths.
 - $\frac{2}{3}$ is greater than $\frac{7}{12}$.
- **2.** Sixths are bigger than ninths. So $\frac{3}{6}$ is greater than $\frac{3}{9}$.
- **3.** a) $\frac{3}{4} = \frac{9}{12}$ b) $\frac{7}{10} > \frac{2}{5}$ c) $\frac{5}{6} = \frac{15}{18}$ d) $\frac{1}{4} < \frac{3}{8}$ e) $\frac{1}{2} < \frac{9}{16}$ f) $\frac{4}{5} = \frac{16}{20}$ **4.** a) $\frac{1}{4}$, $\frac{1}{3}$, $\frac{1}{2}$ b) $\frac{3}{8}$, $\frac{3}{4}$, $\frac{7}{8}$ c) $\frac{1}{2}$, $\frac{2}{3}$, $\frac{5}{6}$
- **5.** a) $\frac{9}{30}$ or $\frac{3}{10}$ of the tiles are yellow b) blue c) pink
- **6.** Student strips should show fractions ordered as follows: $\frac{4}{15}$, $\frac{3}{5}$, $\frac{2}{3}$

Extra Practice 4 – Master 5.34

Lesson 4

- **1.** a) 0.21 b) 0.7 c) 0.1 d) 0.79
- **2.** a) 0.25 b) 0.9 c) 0.40 d) 0.16 e) 0.5 f) 0.75 g) 0.80 h) 0.30
- **3.** a) $\frac{50}{100} = \frac{1}{2}$ b) $\frac{76}{100} > 0.17$ c) $0.8 = \frac{8}{10}$ d) $0.75 > \frac{1}{4}$ e) $\frac{7}{10} = 0.7$ f) $\frac{1}{10} < \frac{3}{5}$
- 4. For example:
 - **a**) $\frac{40}{100}$, $\frac{2}{5}$ **b**) $\frac{25}{100}$, $\frac{1}{4}$ **c**) $\frac{90}{100}$, $\frac{9}{10}$ **d**) $\frac{8}{10}$, $\frac{4}{5}$
- 5. Dallas had 60 cents left. For example: He might have had 6 dimes or 2 quarters and 1 dime.

				Name		Date		
6.	a) $\frac{3}{10}$	b) $\frac{92}{100}$	c) $\frac{26}{100}$	d) $\frac{1}{10}$	e) $\frac{53}{100}$	f) $\frac{9}{10}$		

Extra Practice 5 – Master 5.35

Lesson 5

- Student number lines should be labelled 0.0, 0.5, and 1.0. The decimal sets should be ordered as follows:
 a) 0.3, 0.4, 0.8
 b) 0.2, 0.5, 0.9
 c) 0.10, 0.25, 0.50
 d) 0.20, 0.30, 0.70
- 2. Student number lines and benchmarks should indicate the following:

a) $\frac{4}{10} > 0.3$ **b)** $\frac{3}{5} < 0.8$ **c)** $\frac{1}{5} = 0.2$

- **3.** a) 0.07: closest to 0.00 b) 0.48: closest to 0.50 In order: 0.07, 0.48
- **4.** a) 0.2, 0.50, 0.84 b) 0.3, 0.49, 0.7 c) 0.05, 0.2, 0.6 d) 0.11, 0.17, 0.5
- **5.** a) 0.40 > 0.2 b) 0.6 < 0.62 c) 0.2 = 0.200 d) 0.89 < 0.9 e) 0.9 = 0.90 f) 0.51 > 0.5

Extra Practice 6 – Master 5.36

Lesson 6

1.	a) 0.231	b) 0.173	c) 0.008			
	d) 0.006	e) 0.009	f) 0.784			
2.	a) $\frac{436}{1000}$	b) $\frac{16}{100}$	c) $\frac{4}{1000}$	d) $\frac{102}{1000}$	e) $\frac{18}{100}$	f) $\frac{3}{10}$
3.	a) 4.112	b) 1.456	c) 0.979	d) 2.407	e) 1.456	
4.	a) 0.050	b) 2.350	c) 1.60	d) 8.430		
5.	a) 8 tenths	+ 2 hundredt	hs + 3 thousa	ndths = 0.8 +	0.02 + 0.003	
	b) 4 tenths +	E 2 hundredt	hs + 3 thousai	ndths = 0.4 + (0.02 + 0.003	
	c) 1 + 9 thou	usandths = 1	+ 0.009			
	d) 5 + 3 tenths + 1 hundredth + 7 thousandths = 5 + 0.3 + 0.01 + 0.007					
6.	a) 3: 3 ones	b b) 0: 0 ones	c) 5: 5	ones	
	1: 1 tenth		1: 1 tenth	1: 1	tenth	
	2: 2 hund	redths	0: 0 hundred	ths 4:4	hundredths	
	6: 6 thous	andths	4: 4 thousand	dths 9:9	thousandths	

Extra Practice 7 – Master 5.37

Lesson 7

1. a) 0.7 > 0.2 b) 2.05 > 2.01 c) 7.462 > 7.460 d) 1.7 = 1.70e) 0.68 < 0.684 f) 3.512 < 3.9 **2.** a) 0.37, 0.439, 1.004 b) 0.297, 1.9, 2.83 **c)** 6.019, 6.327, 6.8 **d)** 3.105, 3.6, 5.12 3. For example: **a)** 2.359 **b)** 8.015 **c)** 0.458 d) 1.239 4. For example: a) 0.59 > 0.481 **b)** 4.8 < 6.762 c) 3.001 > 2.994 **d)** 1.53 < 1.611 e) 9.23 > 9.212 **f)** 0.2 > 0.194 **5. a)** 4.998 **b)** 4.763 6. a) Moose **b)** Gordon **c)** Maggie d) For example: 7.145 kg

Extra Practice 8 – Master 5.38

Lesson 8

1.	a) 700 cm	b) 2.4 cm	c) 0.16 m	
	d) 5000 mm	e) 2300 cm	f) 0.84 m	
2.	a) 730 mm, 0.73 m	b) 160 mm, 0.16 m	c) 10 mm, 0.01 m	d) 2310 mm, 2.31 m
	e) 10 000 mm, 10 m	f) 3420 mm, 3.42 m	g) 40 mm, 0.04 m	h) 380 mm, 0.38 m
3.	a) 1000 mm, 100 cm	b) 400 mm, 40 cm	c) 900 mm, 90 cm	d) 2000 mm, 200 cm
	e) 100 mm, 10 cm	f) 600 mm, 60 cm	g) 300 mm, 30 cm	h) 500 mm, 50 cm
4.	a) 50 cm, 0.5 m	b) 6.8 cm, 0.068 m	c) 89.4 cm, 0.894 m	d) 17.6 cm, 0.176 m
	e) 0.5 cm, 0.005 m	f) 77.7 cm, 0.777 m	g) 0.6 cm, 0.006 m	h) 8.2 cm, 0.082 m
5.	Student drawings should be of worms of each length:			
	a) 75 mm or 7.5 cm	b) 4 cm c) 18 cr	n d) 0.132 m or 13	.2 cm
6.	Abigail's frog jumped 0.05 cm farther than Jake's frog.			
7.	a) 2.25 m > 80 cm	b) 456 cm > 1.46 m	c) 27 mm = 2.7 cm	d) 2000 mm < 3.1 m

Extra Practice 9 – Master 5.39

Lesson 9

1. a) 1 ÷ 2 b) 3 ÷ 4 c) 5 ÷ 8 d) 1 ÷ 7 e) 2 ÷ 3 f) 4 ÷ 5 g) 1 ÷ 6 h) 3 ÷ 10

- **2.** a) $\frac{3}{6}$ b) $\frac{5}{8}$ c) $\frac{4}{9}$ d) $\frac{6}{10}$ e) $\frac{4}{11}$ f) $\frac{8}{14}$ g) $\frac{3}{8}$ h) $\frac{7}{9}$
- **3.** a) 2 and $\frac{2}{3}$ b) 2 and $\frac{6}{9}$ c) 28 and $\frac{4}{7}$ d) 3 and $\frac{1}{5}$
 - **e**) 2 and $\frac{5}{6}$ **f**) 18 and $\frac{6}{8}$ **g**) 2 and $\frac{2}{5}$ **h**) 6 and $\frac{1}{3}$
- 4. a) 12.5
 b) 3.4
 c) 49.75

 e) 4.8
 f) 26.5
 g) 13.75

 5. a) \$12.50
 b) 1.8 m
 c) 2.5 kg

 d) 18.6
- **h)** 3.2
- c) 2.5 kg
- 6. 3 bags and $\frac{1}{3}$ bag more.

Extra Practice 10 – Master 5.40

Lesson 10

1.	For example:				
	a) about 15	b) about 10.5	c) about 10		
	d) about 8	e) about 2	f) about 6		
	g) about 10	h) about 13	i) about 0.7		
2.	For example:				
	a) about 5	b) about 3	c) about 6		
	d) about 1	e) about 5	f) about 3		
	g) about 0.7	h) about 4.5	i) about 2		
3.	For example: about 0.5 m				

- 4. For example: about 350 m
- 5. For example: about 2.5 km
- 6. For example: about 0.75 L

Extra Practice 11 – Master 5.41

Lesson 11

- **1.** a) 5.6 b) 13.6 c) 8.01 d) 9.55 e) 4.28 f) 40.40
- **2.** a) 12.17 b) 10.91 c) 5.71 d) 35.93 e) 17.77 f) 97.86
- **3.** a) 11.16 b) 73.62 c) 18.0 d) 76.85
- **4.** a) 8.73 b) 68.67 c) 3.60 d) 12.17
- **5.** a) \$46.09 b) 16.08 c) 102.15 d) \$10.30
- For example: Janet had 2.56 m of blue ribbon and 4.75 m of red ribbon. How much ribbon did she have in all?
 2.56 + 4.75 = 7.31

She had 7.31 m of ribbon.

Extra Practice 12 – Master 5.42

Lesson 12

- **1.** a) 5.4 b) 5.7 c) 1.83 d) \$5.59 e) 50.11 f) 14.67
- **2.** a) 3.46 b) 1.02 c) 5.46 d) 52.9 e) 9.22 f) 10.95
- **3.** a) 1.85 b) 2.84 c) 7.3 d) 10.87
- **4.** a) 7.38 b) 23.66 c) 3.81 d) 44.41
- **5.** a) 5.7 b) 6.35 c) 88.63 d) 36.89
- **6.** For example: Gerard's frog jumped 4.76 m. Maddie's frog jumped 3.89 m. Whose frog jumped the greater distance? How much of a difference was there? Gerard's frog jumped 0.87 m farther than Maddie's frog.

Extra Practice 13 – Master 5.43

Lesson 13

- **1**, **a**) 6.622 **b**) 8.375 **c**) 5.363 **d**) 69.707
- **2. a)** 6.186 **b)** 4.582 **c)** 4.644 **d)** 5.524
- a) 4.601 b) 11.056 c) 2.393
 d) 8.652 e) 1.626 f) 3.44
- a) 9.201 b) 12.345 c) 5.355
 d) 2.604 e) 3.864 f) 24.143
- 5. 355 mL = 0.355 L
 1.36 + 0.355 + 2.00 = 3.715
 There are 3.715 L of liquids.
 This is less than 4 L.
 So, the liquids will fit in the bowl.
- **6.** Several combinations will give results close to 50. For example: 38.926 + 10.457 = 49.383; 39.785 + 10.246 = 50.031; 39.756 + 10.248 = 50.004.